scattering matrix calculation

property

$$
\begin{array}{ll}
\mathrm{s}_{11}=\mathrm{S}_{22} & \text { (symmetry) } \\
\mathrm{S}_{21}=\mathrm{S}_{12} & \text { (reciprocity) }
\end{array}
$$

Series impedance

$$
S_{11}=\left.\Gamma_{1}\right|_{\substack{a_{2}=0 \\ Z_{L}=Z_{0}}}
$$

$$
S_{11}=\Gamma_{1}=\frac{\left(z_{X}+Z_{0}\right)-z_{0}}{\left(z_{X}+Z_{0}\right)+z_{0}}=\frac{z_{X}}{z_{X}+2 z_{0}}
$$

$S_{21}=\left.\frac{b_{2}}{a_{1}}\right|_{\substack{a_{2}=0 \\ z_{L}=z_{0}}}=\frac{V_{2}}{V_{I N}} \quad \begin{aligned} & \text { where } \mathrm{a}_{1}=\mathrm{V}_{1 \mathrm{~N}} \\ & \text { (incident wave) }\end{aligned}$

$$
S_{21}=V \cdot \frac{Z_{0}}{2 Z_{0}+Z_{X}} \cdot \frac{2}{V}=\frac{2 Z_{0}}{2 Z_{0}+Z_{X}} \quad \begin{aligned}
& \text { raised structur } \\
& S_{11}+S_{12}=1
\end{aligned}
$$

