Measured VSWR of complete system

Which component is causing the problem ? Where is the fault located ?

Time Domain Response

Fault locations

Remove unwanted discontinuities

Identify impedance variation of connectors

Simplify filter tuning

Time domain reflectometry

Nature and amplitude of the mismatch

Localization of the mismatch

Measurements

Examples of open and short circuit terminations (Screen captures from the 86100B)

Eile <u>C</u> ontrol	<u>S</u> etup	Measure	C <u>a</u> librate	<u>U</u> tilities	Help	17 Oct 2000 09:39	-
Quick TDR							
TDR/TDT Setup							
Normalize			P*				
•							64.01X 8.0
Response			/				·fj
rise Time							
	-						
1 Scale: 100 mV/div Offset:200.0 mV	2 Sca	le:100 m∀/div et:200.0 m∀	3 Scale:50 Offset:0.0	цVV/div) VV	4 Scale: 10.0 mV/div Offset:0.0 V	/ Time: 600.0 ps/div T Delay:37.4757 ns	rigger Level: 200 mV

Time Domain Reflectometer (TDR)

Synthetic pulse with VNA (Time Domain Option)

<u>Convenience</u>: VNA's outstanding dynamic range compared to the traditional TDR.

The VNA operates the FFT of the Transfer Function, to obtain the Time Response.

Capacitor

Inductor

- A The ringing is caused by the frequency truncation
- B The differences in the width are caused by windowing (between the gray and black traces)
- C The finite impulse is determined by the frequency range of the VNA
- D The difference in magnitude is caused by renormalization (between the gray and black traces)

Figure 2. Comparing IFT calculated (analytic transform) and VNA time domain transform of the same function.

Figure 2 shows the analytically derived transform of the return loss of a 3-pole Butterworth filter along with the VNA time domain transform of the same function. In the analytic transform, the frequency response is calculated using standard network theory, and the Inverse Fourier Transform (IFT) is performed to get the time response. The differences between the analytic transform (IFT calculated) and the VNA transform are caused by the effects of discrete data sampling, frequency truncation, windowing, and renormalization.

2) FFT algorithm requires **symmetric frequency samples** (with respect to the zero).

 $f_{\min} \neq 0$ zero frequency sample <u>MUST</u> be extrapolated.

f_{min} depends by f_{max} and by the number of samples (number of points).

SET LOW FREQUENCY PASS before calibration!

3) The slope of the simulated signal depends by f_{max} :

1 RISE TIME $\propto \frac{1}{F}$ max

The spatial resolution is related to f_{max} .

$$T_{max}=1/2\Delta f$$

The Fourier Transform operates on continuous functions, while the VNA time domain transform must operate on discrete data. One way to look at this is to assume the measured data is a sampled version of a continuous response. The frequency sampling can be visualized as data points evenly distributed over the frequency range of the measurement as shown in Figure 3a. This also creates images of the original function called aliases which occur at repetitive intervals of 1/(frequency step size). Figure 3b illustrates both the discrete data sampling and the alias responses.

The FFT is influenced by the limited number of samples.

The rectangular window <u>isn't</u> the only possible choice.

Name	Δ	Window
Rectangular	-13 dB	Minimum
Hamming's	-44 dB	Normal
Tchebiceff's	-75 dB	Maximum

Different windows have different Δ related to better/worse BW

<u>[</u>:

To select a window, press **System TRANSFORM MENU WINDOW**. A menu is presented that allows the selection of three window types (see **Table** 6-12).

Window Type	Impulse Sidelobe Level	Low Pass Impulse Width (50%)	Step Sidelobe Level	Step Rise Time (10 - 90%)
Minimum	-13 dB	0.60/Freq Span	-21 dB	0.45/FreqSpan
Normal	-44 dB	0.98/Freq Span	-60 dB	0.99/FreqSpan
Maximum	-75 dB	1. 39/Freq Span	-70 dB	1 .48/Freq Span
NOTE: The bandpass mode simulates an impulse stimulus. Bandpass impulse width is twice that of low pass impulse width. The bandpass impulse sidelobe levels are the same as low pass impulse sidelobe levels.				

Table 6-12. Impulse Width, Sidelobe Level, and Windowing Values

pb664d

Figure 6-72. The Effects of Windowing on the Time Domain Responses of a Short Circuit

The pulse response to open or short loads is the FFT of the window being used

Summary

Figure 4a. Sample of truncated response in frequency domain.

Figure 4b. Truncation causes ringing in time domain.

Figure 5a. Applying windowing functions with different β values. Higher values of β reduce the height of the sidelobes. (KB stands for Kaiser-Bessel and is a commonly used window function.)

Figure 5b. Windowing functions applied to a 1-pole filter response.

Figure 5c. Time response of windowed functions and the unit step function.

6) it's possible to identify, in time domain, the part of response I'm iterested in.

GATING (time domain filter)

Gate Shape	Passband Ripple	Sidelobe Levels	Cutoff Time	Minimum Gate span
Gate Span Minimum	±0.10 dB	-48 dB	1.4/Freq Span	2.8/Freq Span
Normal	• 0.01 dB	-68 dB	2.8/Freq Span	5.6/Freq Span
Wide	±0.01 dB	-57 dB	4.4/Freq Span	8.8/Freq Span
Maximum	±0.01 dB	-70 dB	12.7/Freq Span	25.4/Freq Span

 Table 6-13. Gate Characteristics

Lowpass Mode

- Coaxial Cables
- Coaxial Adapters

Bandpass Mode

- Waveguide Components
- Couplers
- Filters
- Antennas

LOW PASS STEP

LOW PASS PULSE

BAND PASS

- Used for band pass devices
- Sign and amplitude of ρ isn't always easy to understand
 - Used for gating

	LOW-PASS	BANDPASS	
	Simula la TDP tradizionala	Analisi nel dominio del tempo per	
	Silliula la IDR tradizioliale	dispositivi a banda stretta	
	Frequenza di inizio dipende dalla		
	freq. massima e dal numero dei	Scopi più generali	
	punti di misura		
	Risoluzione doppia rispetto alla		
	modalità BAND PASS		
Essitazione e gradine	Ideale per identificare discontinuità		
(sten response)	(distanza e tipo) in dispositivi che		
(step response)	supportano la componente DC		
		Ideale per misurare dispositivi con	
Eggitaziona ad impulso	Ideale per osservare piccole	banda limitata come filtri. Utile anche	
(<i>impulse response</i>)	risposte in dispositivi che	per localizzare guasti (non la	
	supportano la componente DC	tipologia), specialmente in sistemi	
		che non supportano la frequenza nulla	

Ten Steps for Performing TDR (Low Pass Step)

- Set up desired frequency range (need wide span for good spatial resolution) 1.
- 2. Under SYSTEM, transform menu, press "set freq low pass"
- 3. Perform one- or two-port calibration
- 4. Select S11 measurement *
- 5. Turn on transform (low pass step) *
- 6. Set format to real *
- 7. Adjust transform window to trade off rise time with ringing and overshoot *
- 8. Adjust start and stop times if desired
- 9. For gating:
 - set start and stop frequencies for gate
 - turn gating on *
 - adjust gate shape to trade off resolution with ripple *
- 10. To display gated response in frequency domain turn transform off (leave gating on) *

 - change format to log-magnitude *

* If using two channels (even if coupled), these parameters must be set independently for second channel

EXERCISES

Fault location <u>Capacity variation</u> (Folded cable) T Z_0 Z₀ С LOW PASS LOW PASS **STEP RESPONSE PULSE RESPONSE** Г **2**T 2T **Inductance variation** (Frayed cable) Zo Zo LOW PASS LOW PASS **STEP RESPONSE PULSE RESPONSE** Г **2**T 2T

TDR and Impulse Response

Output Power -15.0 dBm

Line Loss 0.00 dB/m

 Stop 6.000 ns
 Start 0.000 s
 IF BW 10 kHz

 Swp 3.64 s
 Points 4001
 Output Power -15.0 dBm

 Transform
 Resolution 11.7 mm
 Line Loss 0.00 dB/m

Points 4001

Resolution 11.7 mm

Inductive Swp 4.47 s

Transform

Impedance measurement as a function of Z

Nonideality:

- 1) The function doesn't end at zero (attenuation, energy loss, reflections)
- 2) Second rise time is slower (dispersion, sharp corner are capacitive and cut high frequencies)

To have Z(x) you need to <u>calculate the velocity</u>

20 pF CAPACITOR

19 nH INDUCTANCE

APPLICATIONS

Gating in the Frequency Domain

Equipment Types with Time Domain Capability

Time Domain Reflectometer (TDR)

86100D DCA with 54754A TDR Module

- True time-sampled measurements
- Step Generator with fast rise time
- Oscilloscope-based

Vector Network Analyzer (VNA) Cable and Antenna Test (CAT) Analyzer

N9918A FieldFox 30 kHz to 26.5 GHz

- Swept frequency measurements
- Transform to time domain
- High dynamic range receiver
- Measure band-limited devices

Measured Frequency to Time Transformation

Measured Frequency to Time Transformation

Time Domain with Filter

Terminated with 50-ohm load

Terminated with open

Masking Effects with Filter

- Reflection from open includes masking effects of BPF
- Cable loss entry will not compensate for filter masking

Frequency Span and Pulse Width

Pulse Width ~ 1/(Freq. Span)

Time Domain using 500 MHz Span

Time Domain using 4 GHz Span

Frequency Span and Time Span

Copyright J M Briscoe and licensed for reuse under the Creative Commons License.

Max. Time Span ~ $1/(2\Delta f)$ =

2(Freq. Span)

(Points-1)

LHC TCTP COLLIMATOR WIRE MEASUREMENT

COAXIAL TRANSMISSION LINE PROPERTIES

Matching in impedance measurement is critical.

N. Biancacci et al., TCTP collimator meas., 2014