

FieldFox Handheld Education Series Part 4: Techniques for Precise Time Domain Measurements in the Field

FieldFox Handheld Education Series

- Interference Testing
- Cable and Antenna Measurements
- Calibration and Alignment
- Time Domain Measurements
- Precise Power Measurements

www.agilent.com/find/FieldFoxWebcasts

Tom Hoppin Business Development Engineer

Anticipate ____Accelerate ____Achieve

January 23, 2013

Techniques for Precise Time Domain Measurements in the Field

Outline

- Frequency and Time Domain Testing
- Instruments with Time Domain Capability
- Frequency to Time Transformation
- Time Gating
- Masking Effects
- Distance to Fault Calculations
- Optimizing Time Domain Measurements

Frequency Domain Response

Measured VSWR of complete system

Which component is causing the problem ? Where is the fault located ?

Time Domain Response

Equipment Types with Time Domain Capability

Time Domain Reflectometer (TDR)

- True time-sampled measurements
- Step Generator with fast rise time
- Oscilloscope-based

Vector Network Analyzer (VNA) Cable and Antenna Test (CAT) Analyzer

N9918A FieldFox 30 kHz to 26.5 GHz

- Swept frequency measurements
- Transform to time domain
- High dynamic range receiver
- Measure band-limited devices

Measured Frequency to Time Transformation

.og

10.0 dB/

Cal ON U

Data

Avg

Time Domain Example

Measured Frequency Response

Begin with the frequency response of S11

Reflections from environment create additional ripple in frequency response

Time Domain Transform – No Plate

- · Locate discontinuities as a function of time
- Time resolution is proportional to pulse width

Time Domain with Environment Reflections

Examine frequency response of time filtered signal

Gating in the Time Domain

Filter unwanted reflections

Gating in the Frequency Domain

Remove undesired reflections from the frequency measurement

Ref -60.00 dB

S11 S11

Time Domain with Filter

NA.

Log

10.0

dB/

Cal

ON U

Data

Avg

Terminated with 50-ohm load

Terminated with open

Masking Effects with Filter

Log

10.0

dB/

Cal ON U

Data

Avg

- Reflection from open includes masking effects of BPF
- Cable loss entry will not compensate for filter masking

Relating Time Measurements to Distance

What is the physical Distance to Fault (DTF) ?

Enter Velocity Factor (VF) on VNA,CAT

c = speed of light ε_r = relative dielectric constant of material

Estimating the Velocity Factor (VF)

Configuring the Frequency Range and Points

Frequency Span and Pulse Width

Pulse Width ~ 1/(Freq. Span)

Time Domain using 500 MHz Span

Time Domain using 4 GHz Span

Frequency Span and Time Span

(Points-1)

Copyright J M Briscoe and licensed for reuse under the Creative Commons License.

Max. Time Span ~ $1/(2\Delta f) =$

2(Freq. Span)

nd licensed for reuse mons License.	Span (GHz)	Max Time (μs)	Range (m)
VF=0.66	2.5	2	395
10,001 points	5.0	1	198

Configuring the Time Stimulus

Lowpass Mode

- Coaxial Cables
- Coaxial Adapters

Bandpass Mode

- Waveguide Components
- Couplers
- Filters
- Antennas

Lowpass Mode uses this data

Other Applications Using Time Domain

- Filter tuning
- Transmission line impedance
- Mixer group delay
- SAW filter leakage
- Calibration verification using airlines and shorts
- Optimize time domain measurements using Window function
- Optimize gating using Window function

Conclusions

- Introduced the relationship between the frequency and time domains
- Discussed time domain as a verification and troubleshooting tool
- Discussed time gating for isolating discontinuities
- Investigated masking effects in the time domain
- Introduced instrument configurations for proper DTF testing
- Listed other interesting applications

FieldFox VNA and CAT Analyzer Characteristics

- Carry precision with you Agilent-quality measurements
- Full amplitude accuracy of ±0.6 dB at turn-on, -10°C to +55°C
- Weather resistant, MIL-PRF-28800F Class 2 design
- 6.6 pounds (3 kg)
- Built-in GPS
- 3.5 hour battery life

N9912A 4/6GHz RF Analyzer N9923A 4/6GHz RF Vector Network Analyzer (VNA) N9925A 9GHz Microwave VNA N9926A 14GHz Microwave VNA N9927A 18GHz Microwave VNA N9928A 26.5GHz Microwave VNA

N9913/4/5/6/7/8A RF and Microwave Combination Analyzers

For More Information

Web: www.agilent.com/find/FieldFox

Literature:

- Techniques for Precise Interference Measurements in the Field, application note, literature number 5991-0418EN
- Techniques for Precise Cable and Antenna Measurements in the Field, application note, literature number 5991-0419EN
- FieldFox Handheld Analyzers, brochure, literature number 5990-9779EN

References

• Agilent Application Note 1287-12, *Time Domain Analysis Using a Network Analyzer*, Literature Number 5989-5723EN, May 2012

• Agilent Application Note 1304-2, *Time Domain Reflectometry Theory*, Literature Number 5966-4855E, May 2006

• Agilent Application Note 1287-8, *Simplified Filter Tuning Using Time Domain*, Literature Number 5968-5328E, July 2000

• Agilent Application Note 1287-10, *Network Analysis Solutions Advanced Filter Tuning Using Time Domain Transforms*, Literature Number 5980-2785EN, March 2001

• Agilent Application Note, *Techniques for Precise Cable and Antenna Measurements in the Field*, Literature Number 5991-0419E, August 2012.

