4.5 Cavity shape perturbation

Inserting small metallic objects into a cavity or slightly deforming the shape of the cavity can be treated
by the perturbation technique [4], [5].

Let us designate the fields and the resonant frequency of the unperturbed cavity by Eg, Hp, wg and
of the perturbed cavity by E, H, w; then Maxwell’s equations are

VXxEy = —jwpuHe, Vv XHp=jwyekEp, (120)
IXxE = —jwpH, vxH=jweE, (121)

Manipulating Egs. (120) and (121) we find

H-(VxEp) —Eg- (VxH)=v-(EgxH)=jwpH Hy—jweEy-E,
Hy (VXE)-E- (v xHp)=v-(ExHy)=—jwpHy-H+jweE - Eg,

and after adding both equations and integration over the volume V' of the perturbed cavity

/ v-(ExH’{)—I—EE‘,xH)def{(ExHEH—EBxH)dS
\%4 s

=7§(E;;xH) -dS=—j(w—wg)/(eE‘Ea-HLH-HE‘,)dV. (122)
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In deriving Eq. (122) we used Gauss’ theorem and the fact that n X E = 0 on the surface S of the
perturbed cavity. Referring to Fig. 19, we see that S = Sy — AS and write for the left side of Eq. (122)

f(E:;xH)dsz (Ej x H) dS — (E;;xH)dsz—/ (E&  H) dS,
S So AS AS

because n X Eg =0 on Sp. Substitution into Eq. (122) gives

fAS(EaxH)dS
[, (cE-E§+pH- Hy)dV -

w—wy=—J

(123)

(®)

Fig. 19: Resonant cavity perturbed by a change in shape: (a) original cavity; (b) perturbed cavity
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Equation (123) is the exact expression for the change in the resonant frequency. However, it is of little
use since we do not know the quantities E, H of the perturbed cavity. But if the perturbation is small, E,
H can be replaced by Eg, Hg in the denominator of Eq. (123) because it is essentially the stored energy in
the cavity and this will not change much. In the numerator we approximate H by Hy and use Poynting’s
theorem,

j[ (Ej x H)dS ~ f (B x Ho) dS = —j wg / (e [Bol? —  [Ho[?) v,
AS AS AV
which finally gives for Eq. (123)

w—wy  Jay @|Hol” —€[Eo”)dV _ AW, — AW,
wo fVo (;1, |I‘I()|2 + € |E0|2) av W + W,

(124)

The terms AW,,,, AW, are the changes in the stored magnetic and electric energy, respectively, and
Wi + We is the total stored energy. The result shows that the frequency may either increase or decrease
depending on the location and the character of the perturbation.

The formula (124) was derived by pushing the cavity wall inwards by a small amount. It seems
reasonable to suppose that introducing a small metallic object into the interior of the cavity should perturb
the frequency in a similar way by an amount depending upon the local fields, and thus we could use the
frequency shift to measure the field strength at an interior point. This is in fact the case. We might
further suppose that we only have to perform the integration of the unperturbed fields over the volume
of the perturbing object. This, however, is far from the case because the object perturbs the field in
a way that is essential. In order to calculate the field perturbation we follow a procedure for a small
metallic sphere as outlined in Ref. [6]. With the well-known electric field of a metallic sphere in a
homogeneous electrostatic field the volume integral over the electric field was performed when changing
the sphere radius from 7 to 7y + drg. For the total perturbation caused by the sphere of radius rq the
resulting expression was integrated from zero to 7¢. In an analogous manner the volume integral over
the magnetic field was carried out. As a result form factors for the volume integrals in the numerator of
Eq. (124) were found:

fe:3/2a fm:3/4~

In general, these form factors depend on the shape and orientation and material of the perturbing object.
For some geometries, like ellipsoids, they are calculated [6]; for other more complicated geometries they
can be determined experimentally [7].

5 MEASUREMENTS

Measurement techniques are a vast and complicated area. Here, I present a few basic techniques directly
related to the subjects treated in the previous section.

5.1 Line mismatch

An old-fashioned but instructive way to measure a line mismatch is with a slotted line, Fig. 20. A
movable capacitive probe measures the voltage standing wave ratio, Eq. (33), along the mismatched line.
This yields the magnitude of the reflection coefficient. We further know from Section 2.3 that the first
voltage minimum occurs at a distance (,,;, from the load

218 Cmin = 19 -7
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