The LHC Reflectometer: Obstacle Detection in the LHC Beam Screen

Krakow Workshop, 17.06.2004 www.cern.ch/tkroyer/reflec

Tom Kroyer, CERN AB-RF

In certain accelerators strange objects were found... How to locate them without using the beam???

Waveguide Mode Time Domain Reflectometry

- Waveguide mode time domain reflectromety (TDR) has been used for more than 20 years to locate undesired deformations on long waveguides in telecommunication towers
- It was used at ESRF to locate discontinuities in their vacuum chamber during assembly.

Synthetic pulse TDR

All measurements are done in the frequency domain, conversion to time domain by FFT

Avantages:

- A state-of-the-art vector network analyzer (VNA) can be used
- All parameters can be well controlled => good reproducibility and wide range of settings
- Waveguide calibration and dispersion compensation is possible
- High dynamic range due to frequency domain measurement

Waveguide modes on the beam screen

- On the LHC beam screen, waveguide modes propagate in the microwave frequency range.
- Two modes were found to be suitable for reflectometer operation:

The first TE mode: TE_{c11} cut-off frequency: 3.6 GHz Transverse E field pattern:

The first TM mode: TE₀₁ cut-off frequency: 5.3 GHz Transverse H field pattern:

Challenges of waveguide mode TDR on the beam screen

- Attenuation: limits the range of the reflectometer => high dynamic range of the VNA is indispensable (more than 100 dB!)
- Waveguide dispersion => step-by-step "focusing" to short sections required
- Higher order waveguide mode can propagate
 Mode Mixing can occur
- Multiple reflections by interconnects: Can we look through 50 or more interconnects?

Estimation of range

- The dynamic range of the current VNA of about 120 dB for S₁₁
- The total attenuation at room temperature (including interconnects) is expected to be smaller than 0.07 dB/m for both TE and TM mode
- The smallest obstacle to be found (M3 nut size) should give a reflection of -40 dB
- \Rightarrow attenuation budget: 80 dB
- \Rightarrow one-way attenuation budget: 40 dB
- ⇒ range: 600 m

Dispersion compensation

- Example: 50 m test track of beam screen without cold bore
- Interconnects close to 15 m and 30 m
- Measurement with TM₀₁ mode

17.06.2004 Krakow

Mode Mixing (1)

Good news: was not observed! -20_{1} 2 possible reasons: -30 -40 Very good mode excitation It simply does not occur -60 -70 Check: data was focused for "bad" mode \rightarrow if this mode is present, -80^L 0 10 20 30 40 50 additional peak should free space length on line (one way) [m] become visible

Mode Mixing (2)

What it would look like: Bad excitation of second TE mode, first TE mode appears:

The Measurement Equipment

- Modern network analyser (Agilent E8358x)
- Notebook for number crunching (optional)
- Two kind of mode launchers, one for each mode used
- Signal processing and data archiving software

17.06.2004 Krakow

Prototypes of the Mode Launchers

TE₁₀ mode launcher

- Flat waveguide necessary for a spurious mode-free excitation
- => Use commercial C-band coax to waveguide junction to excite rectangular TE₁₀ mode (nominal frequency range: 3.95 to 5.85GHz)
- Transition to TE_{c11} in beam-pipe (with the index c for cosine defining the polarization of the electric field for the TE₁₁ mode being vertical)
- -23 dB reflection averaged over the frequency range of interest

TM₀₁ mode launcher

- 1.
- Conversion from TEM mode on 50 Ω coax line into TM_{01} on circular waveguide, inspired by conical transmission line as used for low reflection diameter changes
- Transition to TM₀₁ mode on beam-pipe
- Very good rotational symmetry required
- -20 dB reflection averaged over the frequency range of interest

TM₀₁ field pattern

- Field pattern at 7.5 GHz
- Smooth transition between coax line and circular waveguide
- Dielectric plate to keep inner cone in place

Signal Processing Software (1)

- Matlab is used for the signal processing
- Communicates with network analyser
- Waveguide dispersion is corrected numerically
- Different data representations to allow easy interpretation of the data
- A user-friendly interface is currently under development
- On the next slide: screen-shot depicting a typical dipole inspection. For this measurement the TM mode was used. The first reflections are due to the mode launcher, while the peak at roughly 15 m coms from the second extremity of the beam screen

Signal Processing Software (2)

17

Meausurement Procedure and Performance

- Measurements can be performed on dipoles and on longer sections, up to a several hundred meters
- A typical one-way inspection of a dipole should take not more than 10 minutes
- For longer sections the total time is expected to be longer. However, it is possible to do the number crunching and the actual visual inspection off-line
- The spatial resolution of the reflectometer is about 10 cm for a dipole measurements. This means the peak from any obstacles is about 10 cm wide (6 dB width)
- Obstacles as small as M3 nuts can be seen
- An obstacle is any object disrupting the continuity of the beam screen, corresponding to a change in beam pipe geometry, conductivity or dielectric permittivity

Conclusion

- A detection of various kinds of obstacles in the beampipe appears to be feasible
- During assembly, at room temperature, it should be possible to cover about 600m