Advanced Calibration Techniques for Vector Network Analyzers

Presented by: Agilent Technologies
Objectives

- Provide insight into some of the latest calibration techniques that improve accuracy and make calibration easier
- Look at performance improvements using the advanced techniques compared to more traditional methods

Comparing Unknown Thru and Adapter Removal
Agenda

• Overview of Calibration
• Advanced Calibration Techniques
 – “Unknown Thru” Calibration
 – Data-Based Calibration-Standard Definitions
 – Expanded (Weighted Least Squares) Calibration

• Fixture And Probe Techniques
 – Automatic Port Extensions
 – Embedding/De-embedding
 – Measuring Fixtures/Probes
• Electronic Calibration
What is a Vector Network Analyzer?

Vector network analyzers (VNAs)...
- Are stimulus-response test systems
- Characterize forward and reverse reflection and transmission responses (S-parameters) of RF and microwave components
- Quantify linear magnitude and phase
- Are very fast for swept measurements
- Provide the highest level of measurement accuracy

![Diagram of a Vector Network Analyzer](image)
The Need for Calibration

How do we get accuracy?
– With vector-error-corrected calibration
– Not the same as the yearly instrument calibration

Why do we have to calibrate?
– It is impossible to make perfect hardware
– It would be extremely difficult and expensive to make hardware good enough to entirely eliminate the need for error correction

What does calibration do for us?
– Removes the largest contributor to measurement uncertainty: systematic errors
– Provides best picture of true performance of DUT
What is Vector-Error Correction?

Vector-error correction…

- Is a process for characterizing systematic error terms
- Measures known electrical standards
- Removes effects of error terms from subsequent measurements

Electrical standards…

- Can be mechanical or electronic
- Are often an open, short, load, and thru, but can be arbitrary impedances as well
Systematic Measurement Errors

Six forward and six reverse error terms yields 12 error terms for two-port devices

- Directivity
- Crosstalk
- Source Mismatch
- Load Mismatch

Frequency response:
- reflection tracking (A/R)
- transmission tracking (B/R)
Performing the Calibration: SOLT

- Two most common types of calibration: SOLT and TRL
 - Both types remove all the systematic error terms
 - Type and definition of calibration standards are different
- SOLT
 - Basic form uses short, open, load, and known-thru standards
 - Advanced forms use multiple shorts and loads, unknown thru, arbitrary impedances (ECal)
 - Uses the 12-term error model
- Advantages:
 - Easy to perform
 - Applicable to a variety of environments (coaxial, fixture, waveguide…)
 - Provides a broadband calibration
Performing the Calibration: TRL

- Basic form: thru, reflect, line standards
- Advanced forms: TRM, LRM, LRL, LRRL...
- Uses a 10-term error model

- Advantages
 - Uses standards that are easy to fabricate and have simpler definitions than SOLT
 - Only need transmission lines and high-reflect standards
 - Required to know impedance and approximate electrical length of line standards
 - Reflect standards can be any high-reflection standards like shorts or opens
 - Load not required; capacitance and inductance terms not required
 - Potential for most accurate calibration (depends on quality of transmission lines)
 - Commonly used for in-fixture and on-wafer environments
Component Measurement Challenges

Non-insertable coaxial devices
- Same sex connectors (e.g., SMA females)
- Mixed connectors (e.g., SMA and Type-N)

Devices without coaxial connectors
- Surface-mount devices
- Devices on wafer
- Devices with waveguide ports

Mechanically difficult situations
- Physically long devices
- Fixed test-port positions
- Non-in-line connectors

Multiport (>4 port) devices
Unknown Thru Calibration

The “Unknown Thru” technique is…

• Used when a “flush” (zero-length or mate-able) thru cannot be used or when using a flush thru would cause measurement impairment
• A refinement of SOLT calibration
• Also called short-open-load-reciprocal-thru (SOLR)

Unknown Thru technique eliminates need for…

• Matched or characterized thru adapters
• Moving or bending test cables

Works great for many component measurement challenges…

• Non-insertable devices
• Mechanically difficult situations
• Multiport devices
Non-Insertable ECal Modules

ECal resolves many, but not all non-insertable
Compromises of Traditional Non-Insertable Methods

- **Swap equal adapters**
 - Need phase matched adapters of different sexes (e.g., f-f, m-f)
 - Errors introduced from loss and mismatch differences of adapters
- **Use characterized thru**
 - Two-step process (characterize thru, then use it during calibration)
 - Need a non-insertable cal to measure S-parameters of characterized thru
- **Perform adapter removal cal**
 - Accurate but many steps in calibration (need to do two 2-port calibrations)
- **Add adapters after cal, then, during measurement**…
 - Use port extensions – doesn’t remove adapter mismatch effects
 - De-embed adapters (S-parameters known) – similar to characterized thru
Comparing Unknown Thru and Adapter Removal

1.85 f-f adapter comparison

<table>
<thead>
<tr>
<th>Frequency GHz</th>
<th>Magnitude dB</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>10.00</td>
<td>-0.03</td>
</tr>
<tr>
<td>20.00</td>
<td>-0.05</td>
</tr>
<tr>
<td>30.00</td>
<td>-0.08</td>
</tr>
<tr>
<td>40.00</td>
<td>-0.10</td>
</tr>
<tr>
<td>50.00</td>
<td>-0.13</td>
</tr>
<tr>
<td>60.00</td>
<td>-0.15</td>
</tr>
<tr>
<td>70.00</td>
<td>-0.18</td>
</tr>
</tbody>
</table>

Comparison between 1.85 adapter removal cal and 1.85 unknown thru cal.
Unknown Thru Algorithm

Unknown thru algorithm uses same 8-term error model as TRL

\[
[T_m] = \begin{pmatrix}
\frac{1}{e_{10}e_{32}} & e_{10}e_{01} - e_{00}e_{11} & e_{00} \\
-e_{11} & 1 & -e_{22}e_{33} & e_{22}
\end{pmatrix}
\begin{pmatrix}
T_D
\end{pmatrix}
\begin{pmatrix}
e_{32}e_{23} - e_{22}e_{33} & e_{22}
-e_{33} & 1
\end{pmatrix}
\]

Only 7 error terms need to be determined.
Unknown Thru Calibration Requirements

- Systematic errors of all test ports (directivity, source match, reflection tracking) can be completely characterized (6 terms)
- “Unknown thru” calibration standard (7th term):
 - Must be reciprocal (i.e., $S_{21} = S_{12}$)
 - Must know phase to within a quarter wavelength
- VNA signal-path switch errors can be quantified
 - Same restriction as TRL calibration
 - Requires dual reflectometers on all ports or equivalent (e.g., a 2-port 4-receiver VNA)
 - Requires characterization of switch correction terms via a two-tier calibration

$$\begin{bmatrix} S_{11} & S_{12} \\ S_{21} & S_{22} \end{bmatrix} = \begin{bmatrix} b_{11} & b_{12} \\ a_{21} & a_{22} \end{bmatrix} \cdot \begin{bmatrix} 1 & a_{12} \\ a_{21} & a_{22} \end{bmatrix}^{-1}$$
Two-Port Unknown Thru Calibration Sequence

1. Measure open, short, load on port 1 \((e_{00}, e_{11}, e_{10}e_{01})\)
2. Measure open, short, load on port 2 \((e_{22}, e_{33}, e_{32}e_{23})\)
3. Measure insertable adapter (unknown thru) between ports 1 and 2 \((e_{10}e_{32})\)
4. Confirm estimated electrical delay of unknown thru

Unknown Thru calibration is as simple as performing a “flush thru” 2-port calibration!
Unknown Thru Example Using a Bandpass Filter

Measurement of a zero-length thru with SOLT cal (cal thru = flush)

BPF used during thru-calibration step

Measurement of a zero-length thru with unknown thru cal (cal thru = BPF)

0.5 dB/div
Advanced VNA Calibration
© Agilent Technologies, Inc. 2006

Unknown Thru Example Using Attenuators

Thrus:
- Zero-length
- 20 dB attenuator
- 40 dB attenuator

DUT is a zero-length thru
Measuring Physically Long Devices (Usual Way)
Cable Movement Error

Cable Movement Drift Error

-0.20 -0.18 -0.16 -0.14 -0.12 -0.10 -0.08 -0.06 -0.04 -0.02 0.00

Frequency

0.00 5.00 10.00 15.00 20.00 25.00 30.00

dB

Good Cable
Bad Cable
Measuring Physically Long Devices (Unknown Thru)

- Little or no cable movement!
- Thru can be DUT itself
Comparing Unknown and Flush Thru for Long Device

Long (Aspect Ratio) Device, 3.5 inch x 1 mm cable, Test Comparison

error due to cable movement
Measuring Devices with Non-Aligned Ports (Usual Way)
Measuring Devices with Non-Aligned Ports (Unknown Thru)
Multiport Case (Unknown Thru)
4-Port Unknown Thru with Different Connectors

Perform SOL cal on each test port using a cal kit that matches connectors

Finish multiport cal using unknown thru’s

SOL calibrations (mechanical or ECal)

Unknown thru’s (adapters)
On-Wafer Calibrations Using Unknown Thru’s

 Straight thru’s

 Port 1

 Port 2

 TRL on-wafer cal

 Port 3

 Port 4

 Imperfect thru’s

 Port 1

 Port 2

 and/or

 Port 3

 Port 4

 Unknown thru’s
Unknown Thru for Different Waveguide Bands

- Calibrate each waveguide adapter with appropriate waveguide cal kit
- Watch out for these potential problems:
 - Non-overlapping waveguide bands
 - Attenuation near cutoff may be too high for thru calibration
 - Undesired higher-order modes
 (longer adapters provide better attenuation for higher-order modes)

- 1-port waveguide cals
- Long enough?
- Tapered or stepped adapter
- Higher cutoff frequency
Defining Calibration Standards

- VNA calibration requires a known electrical standard
- Several approaches for “knowing” electrical performance
 - **Nominal models** based on nominal physical dimensions
 - **Characterized models** based on individually measured physical dimensions
 - **Characterized models or data** based on individually measured electrical quantities
- Models can be polynomial based or data based
 - Polynomial example: C_0, C_1, C_2, C_3 for capacitance of open
 - Data-based example: CITIFILE with magnitude and phase data versus frequency
Traditional Polynomial-Based Models

- Lossy transmission line terminated with either:
 - a frequency-dependant impedance for opens and shorts
 - a perfect load \((S_{11} = 0) \)

- Third-order polynomial models for \(Z_t \):
 - Open capacitance:
 \[
 C(f) = C_0 + C_1 f + C_2 f^2 + C_3 f^3
 \]
 - Short inductance:
 \[
 L(f) = L_0 + L_1 f + L_2 f^2 + L_3 f^3
 \]
Data-Based Values - 85059A 1.0 mm Calibration Kit

![Graph showing data-based values for different shorts at various frequencies.](image-url)
Calibration Standard Modeling Process

Compute nominal response from nominal dimensions

Fit nominal response to polynomial model

Nominal polynomial model: offset loss, delay, Zo, Co, Ls (includes fitting errors)

Nominal data-based model (eliminates fitting errors)

Fitting errors typically get worse as frequency increases
Fitting Errors

- A given standard can have more than one polynomial model
- Optimized, multi-band models often used to improve accuracy at high frequencies

Comparison of polynomial models for 1.85 mm short 1 (5.4 mm offset)
Benefits of Data-Based Standards

- Increased accuracy of calibration compared to using polynomial models, especially for frequencies > 50 GHz
- Eliminates the necessity of fitting the calibration standard’s response to a limited set of low-order models
 - Not restricted to “coax” or “waveguide” models
 - Account for any type of dispersion
 - Great for on-wafer, microstrip, coplanar, etc.
- Makes it easy to use characterized devices during calibration
 - No longer need to assume perfect standards (like a broadband load)
 - Use of a characterized load retains ease-of-use of a broadband-load SOLT calibration while significantly improving accuracy
- Can include accuracy data for expanded math
Data-based Standards: Nominal or Characterized Models

Model
- Compute nominal response from nominal dimensions

Nominal data-based model (valid for a particular part number)

Approach currently used for Agilent’s commercial 1.85 and 1.0 mm cal kits

Measure
- Characterize actual response for a particular standard (for example, a fixed load)

Characterized data-based model (valid for a particular standard)

Often used in metrology labs
Data-Based Standard File

CITIFIILE A.01.01
#PNA Rev A.01.00
#PNA STDTYPE DATABASED
COMMENT MODEL: 85058-60101
COMMENT SERIAL NUMBER: NOMINAL
#PNA STDREV Rev A.01.00
#PNA STDLABEL "SHORT 1 -M-
#PNA STDDESC "1.85 mm male [SHORT 1]"
#PNA STDFRQMIN 0
#PNA STDFRQMAX 70000000000
#PNA STDNUMPORTS 1
COMMENT "1.85 mm" known so #PNA DEFINECONNECTOR statement non needed
COMMENT #PNA DEFINECONNECTOR "1.85 mm" 0 70000000000 COAX
#PNA CONNECTOR 1 "1.85 mm" MALE
COMMENT PINDEPTH is optional, only applies to coax devices
#PNA PINDEPTH 1 0.007 0.007

NAME DATA
COMMENT This section describes the s parameter data and weighting
COMMENT factor for the calibration standard
COMMENT COVERAGEFACTOR is used to scale the weighting factor
COMMENT S[i,j] is sij for the standard. Supported formats: RI
COMMENT U[i,j] is the weighting factor for sij.
COMMENT Supported U[i,j] formats: RI, MAG
#PNA COVERAGEFACTOR 2

VAR Freq MAG 509
DATA S[1,1] RI
DATA U[1,1] MAG
VAR_LIST_BEGIN
0
1000000
1500000
...
70000000000
VAR_LIST_END
BEGIN
-1,0
-0.99976354927,0.00249289367
-0.99970950119,0.00367766097
...
0.9772034982,-0.14575300423
END

COMMENT note number of points is 509 below
CITIFIILE A.01.01
#PNA Rev A.01.00
#PNA STDTYPE DATABASED
COMMENT MODEL: 85058-60101
COMMENT SERIAL NUMBER: NOMINAL
#PNA STDREV Rev A.01.00
#PNA STDLABEL "SHORT 1 -M-
#PNA STDDESC "1.85 mm male [SHORT 1]"
#PNA STDFRQMIN 0
#PNA STDFRQMAX 70000000000
#PNA STDNUMPORTS 1
COMMENT "1.85 mm" known so #PNA DEFINECONNECTOR statement non needed
COMMENT #PNA DEFINECONNECTOR "1.85 mm" 0 70000000000 COAX
#PNA CONNECTOR 1 "1.85 mm" MALE
COMMENT PINDEPTH is optional, only applies to coax devices
#PNA PINDEPTH 1 0.007 0.007

NAME DATA
COMMENT This section describes the s parameter data and weighting
COMMENT factor for the calibration standard
COMMENT COVERAGEFACTOR is used to scale the weighting factor
COMMENT S[i,j] is sij for the standard. Supported formats: RI
COMMENT U[i,j] is the weighting factor for sij.
COMMENT Supported U[i,j] formats: RI, MAG
#PNA COVERAGEFACTOR 2

VAR Freq MAG 509
DATA S[1,1] RI
DATA U[1,1] MAG
VAR_LIST_BEGIN
0
1000000
1500000
...
70000000000
VAR_LIST_END
BEGIN
-1,0
-0.99976354927,0.00249289367
-0.99970950119,0.00367766097
...
0.9772034982,-0.14575300423
END

COMMENT note number of points is 509 below
CITIFIILE A.01.01
#PNA Rev A.01.00
#PNA STDTYPE DATABASED
COMMENT MODEL: 85058-60101
COMMENT SERIAL NUMBER: NOMINAL
#PNA STDREV Rev A.01.00
#PNA STDLABEL "SHORT 1 -M-
#PNA STDDESC "1.85 mm male [SHORT 1]"
#PNA STDFRQMIN 0
#PNA STDFRQMAX 70000000000
#PNA STDNUMPORTS 1
COMMENT "1.85 mm" known so #PNA DEFINECONNECTOR statement non needed
COMMENT #PNA DEFINECONNECTOR "1.85 mm" 0 70000000000 COAX
#PNA CONNECTOR 1 "1.85 mm" MALE
COMMENT PINDEPTH is optional, only applies to coax devices
#PNA PINDEPTH 1 0.007 0.007

NAME DATA
COMMENT This section describes the s parameter data and weighting
COMMENT factor for the calibration standard
COMMENT COVERAGEFACTOR is used to scale the weighting factor
COMMENT S[i,j] is sij for the standard. Supported formats: RI
COMMENT U[i,j] is the weighting factor for sij.
COMMENT Supported U[i,j] formats: RI, MAG
#PNA COVERAGEFACTOR 2

VAR Freq MAG 509
DATA S[1,1] RI
DATA U[1,1] MAG
VAR_LIST_BEGIN
0
1000000
1500000
...
70000000000
VAR_LIST_END
BEGIN
-1,0
-0.99976354927,0.00249289367
-0.99970950119,0.00367766097
...
0.9772034982,-0.14575300423
END

COMMENT note number of points is 509 below

What is Expanded (Weighted-Least-Squares) Cal?

- Measures multiple (>3) standards at each frequency to provide over-determined solution to reflection error terms of SOL cal
- Uses weighted-least-squares fit to calculate error coefficients
- Weighting factor is a function of frequency and is a combination of calibration-standard accuracy and proximity to other standards
- Eliminates discontinuities due to abrupt changes in calibration standards for different frequency bands

Result: higher accuracy!
Advantage of Measuring More Than 3 Standards

- Similar to trace averaging – the more data, the better the results
- Reduces residual errors after calibration
- Used in Agilent’s ECal (electronic calibration) modules to improve accuracy
Why “Weighted” Least Squares?

- Weighted least squares (WLS) beneficial when calibration standards are known with different levels of accuracy
 - Fixed loads are more accurate at low frequencies
 - Sliding loads are generally more accurate at higher frequencies
 - Shorts are more accurate than opens
- Less weighting is assigned to calibration standards that are bunched together (proximity effect)
Factors That Contribute to Weighting

- **Accuracy of standard model** (relative or actual)
 - Part of standard definition

- **Proximity to other standards**
 - Firmware algorithm determines proximity

- **Normalized weighting factor** (normalized so that largest weight equals 1)

- Data-based standards use actual reported accuracy
- Polynomial standards use relative accuracy model, defined over full frequency range of the connector
- Mixing actual and relative accuracy within a particular calibration kit may lead to less-than-optimal results
Example of Relative (Normalized) Weighting

Weights for each standard versus frequency for a weighted-least squares calibration using an 85050B (a non-data-based) 7mm cal kit.
Measurements Comparing Three Calibrations

Flush short

$\text{5 cm airline + short}$

- data-based expanded cal (WLS)
- 3-standard data based
- polynomial (banded)
WLS and Sliding-Load* Calibration Comparison – Flush Short

* Commercially available (non-Agilent) sliding-load cal kit
WLS and Sliding-Load* Calibration Comparison – 5 cm Airline With Flush Short / Fixed Load

Data-based calibration with expanded math yields much lower measurement errors compared to conventional sliding-load cal

* Commercially available (non-Agilent) sliding-load cal kit
Offset Load Calibration Overview

- Offset-load calibration originated with 8510
- Offset load is a compound standard – load is connected multiple times with different offsets
- In simplest and most common form, there are just two connections: the load by itself, and the load with an offset
- Similar to a sliding load standard, except offsets are set by a known, precise transmission line (e.g., a waveguide section)
- Not the same as a load standard with defined delay, which is a single standard

1. Measure load by itself
2. Measure load plus offset
Offset Load Calibration Advantages

• Provides higher directivity and load match accuracy when the definition of the offset is better known than the load definition
• Does not require a dual reflectometer VNA as it uses SOLT error model instead of TRL error model
• Ideal for 1-port calibrations
• Also helpful in situations where calibration planes cannot physically move, such as fixed probe or waveguide positions, where TRL calibrations are difficult
• Waveguide offset-load standard can include loss term (especially valuable near cutoff frequency)

Attenuation constant in WR-159 waveguide
Offset Load Definition

- Only available in PNA guided calibration (SmartCal)
- Math is enhanced over what 8510 did
- Offset load definitions are included in Agilent waveguide cal kits
Error Correction Choices

Port extensions have gone APE!

Port Extensions
Normalization (response cal)

Full N-port corrections (SOLT, TRL, LRM...)

Direct Measurement
Modeling

Easier
Lower
Difficulty
Accuracy
Harder
Higher

De-embedding
APE = Automatic Port Extensions

• First solution to apply both electrical delay and insertion loss to enhance port extensions
• First approach to give reasonable alternative to building in-fixture calibration standards or de-embedding fixture
• Recommended procedure: perform a two-step calibration
 • Step 1: Perform a full two-port coaxial calibration (includes network analyzer, test cables, and adapters)
 • Step 2: Perform a response calibration of test fixture

APE accounts for loss and phase of fixture transmission lines
Automatic Port Extensions – Step 1

• First, perform coaxial calibration at fixture connectors to remove errors due to VNA and test cables.
• At this point, only the fixture loss, delay and fixture mismatch remain as sources of error.
Automatic Port Extensions – Step 2

- After coaxial calibration, connect an open or short to the portion of fixture being measured (will be repeated for all ports of test fixture)
- Perform APE: algorithm measures each portion of fixture and computes insertion loss and electrical delay
- Values calculated by APE are entered into port extension feature
- Now, only fixture mismatch remains as source of error (dominated by coaxial connector).

Coaxial calibration reference planes

Open or short placed at end of each transmission line

Port extensions with loss and delay provide a response calibration of the test fixture
Measurement Results

Delay and loss compensation values computed by APE

With Automatic Port Extensions

Without Automatic Port Extensions

Example test fixture
Automatic Port Extensions – Implementation

- Measures S_{ii} (reflection) of each port
- Uses ideal open or short models
- Computes electrical delay using best-fit straight-line model
- Computes insertion loss using a best-fit coaxial (one frequency point) or dielectric (two frequency points) loss model
- Computed delay and loss values are automatically displayed via a port-extension tool bar
- Values saved as part of instrument state
Which Standards Should I Use?

- For broadband applications, shorts or opens work equally well
- Choose the most convenient standard (often an open) – this is a key benefit of Automatic Port Extensions
- Will using both an open and a short improve accuracy?
 - Using two standards makes little difference for broadband measurements, as many ripples occur and calculated loss is the same for open or short
 - Using two standards improves accuracy for narrowband measurements, where a full ripple cycle does not occur
Broadband APE Example

APE with short

APE with open

Very little difference up to 10 GHz

(DUT = short)

No port extension applied
Narrowband APE Example

APE with short
APE with open
APE with both open and short

Large variation between open and short

(DUT = short)

400 MHz span
Adjusting for Mismatch Ripple

Don’t adjust for mismatch

Adjust for mismatch

No port extension applied

Adjusting for mismatch keeps reflection below 0 dB

Note: adjusting the loss term to account for mismatch ripple is not the same as removing the mismatch with vector-error correction.
Summary of Automatic Port Extensions

• Especially useful for in-fixture applications where complete calibration standards are not available
• Eliminates the need to design and build difficult load standards
• Applicable to a wide range of fixture designs
• Works with probes too
• Easy to use and provides quick results with medium accuracy
Virtual Fixturing Using Software Tools in VNA

- Software-fixture tools recalculate single-ended S-parameter data to...
 - Change test port impedances
 - De-embed test fixtures, probes, adapters, cables, etc.
 - Embed matching circuits
 - Calculate mixed-mode (differential / common mode) S-parameters
- Fixturing features are common to PNA and ENA families and Physical Layer Test Software (PLTS)
- Especially useful for single-ended-to-balanced or fully balanced devices
Order of Fixturing Operations

• **First, single-ended functions are processed in this order:**
 – Port extensions
 – 2-port de-embedding
 – Port Z (impedance) conversion
 – Port matching / circuit embedding
 – 4-port network embed/de-embed

• **Then, balanced functions are processed in this order:**
 – Balanced conversion
 – Differential- / common-mode port Z conversion
 – Differential matching / circuit embedding
Port Matching

Port matching feature is same as embedding
Differential Port Matching

Enable Differential Port Matching

Logical Port: 2

Select Circuit: Shunt L - Shunt C

Circuit Values:
- C: 0.000 F
- L: 0.000 H
- R: 0.000 ohms
- G: 0.000 S

Differential Port Matching

Enable Differential Port Matching

Logical Port: 2

Select Circuit: User Defined (S2P File)

Browse...
Single-Ended and Differential Port Z (Impedance) Conversion
Two-Port De-Embedding

PNA uses this file definition for ports:

- Port 1 of the fixture is connected to the PNA
- Port 2 of the fixture is connected to the DUT
Four-Port Embedding/De-Embedding

For one-port balanced devices

For two-port balanced devices

For balanced to single-ended devices
Two Versus Four Port Embedding / De-Embedding

- Question: On a balanced port, what is the difference between:
 - Two .s2p embedding/de-embedding files?
 - One .s4p embedding/de-embedding files?
- Answer: Crosstalk terms!

Cannot simulate fixture crosstalk between PNA ports 1 and 2

Can use full “leaky” model to simulate fixture crosstalk
On-Wafer Mixer Measurements Using FCA

- Previous versions of the Frequency Converter Application (FCA) did not allow on-wafer measurements using Scalar- or Vector-Mixer Cals
- A.06.0x allows embedding of probe data files during FCA calibration
- Perform S-parameter, power-meter, & cal-mixer calibrations in coax
- After coax calibrations, reference plane is at probe tip
How Do I Get My Probe De-Embedding Data?

- Three techniques to measure S-parameter data of probes...
 - Easiest: use PNA or ENA macro that performs two one-port calibrations
 - Measure a thru and then do an adapter-removal calibration
 - Measure a thru and then do an unknown thru calibration
- Using two one-port calibrations...
 - Assumes probe is reciprocal ($S_{21} = S_{12}$)
 - First one-port calibration uses coaxial standards
 - Second one-port calibration uses probe standards
 - Macro extracts .s2p data of probe using the two one-port calibrations
Measuring Probes Using Adapter Removal or Unknown Thru Calibration

In either case, start by measuring a thru standard:
1. Perform an SOLT or TRL cal using wafer probes
2. Measure thru device and save data in .s2p file for de-embedding in a later step
Measuring Probes Using Adapter-Removal Cal

3. Perform an adapter removal calibration using coaxial and on-wafer standards

- **Coaxial cal**

 - 2-port cal
 - "Adapter"

- **Wafer cal**

 - 2-port cal

- **Final 2-port calibration planes**
Measuring Probes Using Adapter-Removal Cal (cont)

4. Measure thru plus probe
5. De-embed **swapped** thru data to obtain probe data
6. Save probe data in .s2p file for later use in measuring DUTs
7. Repeat for other probe(s) if desired

Diagram Description:
- **2-port calibration planes**: Probe
- **Thru**: Probe
- **DUT**: De-embed swapped thru data from DUT data to get probe data
Measuring Probes Using Unknown Thru Cal

3. Perform unknown thru cal in coax and with probe
4. Measure thru plus probe
5. De-embed *swapped* thru data to obtain probe data
6. Save probe data in .s2p file for later use in measuring DUTs
7. Repeat for other probe(s) if desired
How Do I Get My Fixture De-Embedding Data?

1. Perform an unknown thru cal using coax on one side, a probe on the other side, and the fixture itself for the unknown thru
2. Measure the fixture section and save data as .s2p file
3. Repeat for each section of fixture
What is Electronic Calibration?

• Calibration using standards that are electronically switched known impedances, instead of shorts, opens and loads
• Impedance standards are spread out on the Smith chart
• Impedances known by measurements at factory using individually characterized coaxial airlines and TRL cals
• Impedances are very repeatable due to:
 – Hermetically sealed “ECal on a chip” microcircuit
 – Internal electric heater
 – Low thermal mass of microcircuit
 – Low thermal conductivity between microcircuit and outside world
 – Mechanically rugged connectors
Benefits of Electronic Calibration

• Provides fast AND accurate calibration
 – Typical calibration takes 20 to 60 seconds with ECal versus several to many minutes when using mechanical standards
 – Accuracy equivalent to a short-open-sliding-load calibration
• No risk of connecting the wrong mechanical standard
• Lowers wear and tear on connectors and standards
• Lowers chances of repetitive-motion injuries of users, especially for test systems with a large number of test ports
Agilent’s “ECal” Line of Electronic Calibration

- Frequency coverage from 300 kHz to 67 GHz in many connector types (7/16, Type F, N, and 7, 3.5, 2.4, 2.92, 1.85 mm)
- Two and four port modules, with mixed connector sexes and types
- User characterization of modules lets you add adapters, use different connectors, de-embed fixtures and probes, and do yearly re-certification
- Easy connection with USB
Details of User Characterization

• Add up to 5 user-measured data sets to flash memory of module
• Easy to perform:
 – Define frequency range and number of points
 – Calibrate network analyzer with mechanical standards
 (quality of user characterization depends on this calibration)
 – Follow calibration wizard to characterize each port of ECal module
• User-characterized ECal is used just like a standard factory-characterized ECal
• Confidence check tells you when to characterize again
User Characterization: Using Adapters

Step 1: Calibrate test system with desired connectors using any calibration method (SOLT, SOLR, TRL)

Step 2: Connect ECal module with adapters to analyzer

Step 3: Perform user characterization of ECal module using calibrated test system
User Characterization: Embedding Fixture Data (Only Need to Do This Once)

Step 1: Calibrate test system & fixture using any calibration method (SOLT, TRL, …)
Step 2: Disconnect cables from fixture and connect them to ECal module
Step 3: Perform user characterization of ECal module (fixture data is embedded)
Step 4: Disconnect cables from ECal module and reconnect to fixture
User Characterization: Applying Fixture Cal (Simple! Does Not Require In-Fixture Cal)

Step 1: Disconnect cables from fixture
Step 2: Connect cables to ECal module
Step 3: Perform “User-Defined ECal Calibration” of test system
Step 4: Disconnect cables from ECal module and re-connect them to fixture with DUT
Step 5: Start measuring! (Fixture data is de-embedded from the measurement)
Summary

- **Calibration** is a key part of accurate measurements using vector network analyzers.
- Many **new techniques** increase accuracy or make calibration easier to perform, especially for fixtured or on-wafer measurements.
- The **“Unknown Thru” calibration** eliminates cable movement and simplifies non-insertable calibrations.
- **Data-based-standard definitions** and **expanded calibration** using weighted-least-squares math greatly impr 67 GHz and 110 GHz measurements.
- Testing multiport devices is easier and more accurate than ever due to **N-port calibration** and **reduced-standard calibrations**.
Summary (continued)

• **Two-tier TRL calibration** allows single-receiver VNAs like Agilent’s 4-port PNA-L take advantage of TRL, LRM, LRL cals for fixtures & probes

• **Offset-load calibration** increases accuracy for one-port waveguide cals with compound load standard and accurate waveguide loss model

• Advanced **mixer/converter calibrations** yield the highest accuracy for measuring conversion loss and absolute group delay
Summary (continued)

• **Automatic-port extensions** are simple to perform for medium-accuracy measurements of fixtured components.

• **Software fixture tools** allow port-impedance conversions, embedding, de-embedding, and mixed-mode S-parameter measurements of single-ended and balanced devices.

• **Electronic calibration** is a simple, fast and accurate way to calibrate network analyzers in a variety of applications.
Additional Resources

- **Application note** 1287-11 “Specifying Calibration Standards and Kits for Agilent Vector Network Analyzers”, 5989-4840EN
- **Magazine article** “Latest Advances in VNA Accuracy Enhancements”, Dave Blackham, Ken Wong, Microwave Journal, July, 2005
- **Agilent Web links**:
 - Network analyzer calibration: www.agilent.com/find/nacal
 - PNA network analyzers: www.agilent.com/find/pna
 - PNA-L network analyzers: www.agilent.com/find/pnal
 - ECal electronic cal modules: www.agilent.com/find/ecal
 - PNA Help Online: na.tm.agilent.com/pna/help/PNAWebHelp/help.htm
 - Cal kit definitions: na.tm.agilent.com/pna/caldefs/stddefs.html
Network Analyzer Forum www.agilent.com/find/agilent_naforum

- Learn more about calibration, applications, general usage, and remote operation
- Get answers from the factory
- Have peer-to-peer discussions

Dedicated section for calibration and error correction issues