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Abstract
The low-level RF system generates the drive sent to the high-power equip-
ment. It uses signals from the main bending magnet (

�
field) and from beam

pick-ups (radial and longitudinal positions). It must minimize the beam losses
and provide a beam with reproducible parameters (intensity, bunch length, av-
erage momentum and momentum spread) for either the next accelerator or the
physicists. This presentation is the first of two: it considers the low intensity
case where the voltage in the RF cavity is not influenced by the beam. The
feedback loops that do not include the beam (accelerating field amplitude and
cavity tuning) will not be presented.

1 BASIC NOTIONS ON ACCELERATION IN SYNCHOTRONS

1.1 The harmonic number
The RF system accelerates particles by producing a time-varying electric field in a cavity. At each turn
the particle crosses the cavity. The RF frequency ����� must stay locked in frequency to the revolution
frequency � ����� otherwise the accelerating voltage will average to zero,�	�
������ ������� (1)

The integer h is called the harmonic number.

1.2 The stable phase
At each traversal of the cavity the particle receives an energy kick [1]–[3]��� �����������! #" (2)

where � is the charge of the particle, � is the accelerating voltage and  " is the phase of the RF when the
particle crosses the cavity (synchronous phase or stable phase). The corresponding momentum kick is�%$ � ���&('*),+ � �����.- (3)

where
&('*) +

is the machine circumference. The rate of change of momentum is thus/ $/�0 � �%$ � �1��� �����������! " 2&('*)%+ � (4)

To stay on the centred orbit, the momentum must follow the
�

field [1]–[3]$ ���	3 � - (5)

where 3 is the bending radius. During acceleration the RF voltage and stable phase will thus obey the
relation �4�5���! " � &('*)%+ 3 / �/�06� (6)
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Once the RF voltage is defined, the above relation can be inverted to give the stable phase as a function
of the RF voltage and the time derivative of the

�
field " ��7(8:9<;:=?> @ &('*),+ 3BA:CA
D�.E � (7)

The above function is called the stable phase programme (see Fig. 1).
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Fig. 1: Variation of the stable phase during the proton cycle in the CERN SPS (acceleration from FHG GeV to GJILK GeV).

Transition energy (see Section 1.4) at M:N GeV crossed around time F�ILKLK ms with a phase jump from O�PQ to OSRQUTWV4X OYPQ ).

Courtesy of T. Bohl, CERN SL/HRF.

1.3 Synchrotron oscillations
By definition the synchronous particle is the particle that stays at the stable phase during the acceleration,
i.e. the RF phase when it crosses the cavity is  " . Its momentum,

$ " , is such that it stays on the
centre orbit.1 We define the synchronous RF frequency Z " as

&('  times the revolution frequency of
the synchronous particle. A bunch consists of many particles. Each particle is characterized by its
coordinates in phase and momentum: let  [�\ "^]`_  be the phase of the RF when the particle crosses
the cavity and let

$ � $ " ]`_ $ be its momentum. We now derive the equation of motion in the presence
of a small modulation of the RF frequency Za�
���bZ "!]�_ Zc�
� . First the momentum gain per turn://S0 _ $ � ���&('*)%+�d �5��� d  #" ]`_  feagh�����! #":eji ����kJlm� d  " e&('*),+ _  � (8)

The above linear approximation is valid for small phase deviations only. A second equation relates
the phase slip to the difference in beam frequency ��n and the RF frequency modulation://�0 _  U�\g &(' _ �(n ]�_ Z!�
� - (9)

where _ �mn is the particle frequency deviation that can be related to the momentum deviation via the
slippage factor (Eq. 10)2 o �\gWp �Hq� qpsrr � 2t#uD g 2t u - (10)

1 The subscript v refers to the synchronous particle.

2 Some authors define w as xsy{zy{zx?|| .
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where t � �~}	� +
(
� +

being the rest energy) and t D is the value of t at the transition energy. Recall
that  "j]�_  is the phase of the RF when the particle crosses the cavity while � "j]�_ �(n is the particle
frequency. A faster particle will cross the cavity earlier, i.e. with a negative _  . This explains the minus
sign in Eq. (9). By differentiating Eq. (9) and using Eqs. (10) and (8) we get/ u/S0 u _  ]�� u" _  U� / _ Zc�
�/�0 � (11)

Similarly, by differentiating Eq. (8) and using Eqs. (9) and (82) we get/ u/�0 u _ $ ]�� u" _ $ � ����kJlm� d  " e&('*),+ _ Zc�
� � (12)� " is called the synchrotron frequency� "��\� g ��(k&('*) u+^� "$ " o "L�4k�lm� d  #"Le - (13)

where � " is the normalized velocity � " } k of the synchronous particle. The equation of motion is one of
an undamped resonator excited by the RF frequency noise. Its resonant frequency � " varies during the
acceleration. It depends on the synchronous momentum via the parameters

$ " , � " and t " , and on the
RF parameters � and  " . Figure 2 shows a mechanical analogy of the longitudinal motion: an object of
mass � is free to move on an horizontal axis. It is subject to the force of a spring of strength � . Let � d 0 e
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Fig. 2: Mechanical analogy of the synchrotron oscillation

be its position at time
0
, the equation of motion is/ u �/�0 u ] �� ����� � (14)

Starting with an initial displacement � + and zero velocity, the solution is� d 0 e��b� + kJlm� d�� 0 e (15)

with � �.� �� . The oscillation lasts forever because there is no damping term (first order derivative) in
the equation of motion. The motion can also be represented in the d � - A��A�D e plane, called the phase plane.
Since / �/�0U�\g�� + � �5��� d�� 0 e - (16)

we have � �� +Y� u ] @ A��A
D� + � E u � 2 � (17)
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Fig. 3: Phase space trajectory in the �?OY����	���������  plane. Case above transition: The particles move clockwise along the trajec-

tories. The stable phase is F
I:K<¡ . The vertical axis can also be labelled in momentum, energy, frequency or radial position.

(Reproduced from Ref. [2]).

The trajectory is an ellipse in phase plane. Similarly the particles that have small phase and
momentum deviations with respect to the synchronous particle describe small ellipses around the d  " - �Sepoint in the d  -£¢¤ Q A
¥A�D e plane (Fig. 3). As we consider particles with

larger and larger deviations, their trajectory become less elliptic. Recall that we have linearized
the equation of motion (8). The largest trajectory shown is called the separatrix: its width depends on
the stable phase only. In normalized units ¢¤ Q A:¥A�D , its height, also depends on the stable phase only. One
often uses momentum or energy for the vertical axis. With these units the height of the separatrix is
proportional to the square root of the RF voltage [2]. Outside the separatrix the particle trajectories are
not closed: These particles are not captured by the RF and will be lost as the acceleration proceeds. The
area inside the separatrix is called the RF bucket. The formula for the synchrotron frequency (13) was
derived using the linearized equation of motion. It is exact for small trajectories around the synchronous
particle. For larger deviations, the frequency of the oscillation is decreased and finally vanishes on the
separatrix [2].

1.4 Transition energy
The slippage factor

o
is negative at low energy d t`¦�t D e and positive above the transition energy. This

change of sign is easily understood: a particle with a momentum in excess (positive p{rr ) will travel faster
than the synchronous particle but it will travel on an off-centred orbit since its mass is also larger. Its orbit
will thus be longer. At low energy the velocity increase wins over the orbit lengthening and the frequency
will increase (negative

o
). As the energy gets higher, the particle velocity approaches the speed of light

and the winning factor is the orbit lengthening (positive

o
). The equation of motion (11) will be stable

only if � u " is positive. We thus conclude from Eq. (13) that the sign of kJlm� d  " e must change at transition:
below transition the particles move counter-clockwise in phase space and kJlm� d  " e is positive (  " will
typically be between ��§ and ¨(��§ ). Above transition kJlm� d  " e is negative (  " between

2�© �S§ and
2�ª ��§ ).

The phase of the RF must jump at transition as shown in Fig. 1 for the proton cycle in the CERN SPS.
Such a critical RF manipulation is possible because the synchrotron frequency goes to zero at transition.
The dynamics of the bunch are thus very slow at that critical moment.
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1.5 The accelerating bucket
The bunch consists of many particles, each undergoing synchrotron oscillations in phase space. The
longitudinal emittance of the bunch is the area that it fills in (energy,time) space. It is often measured in
eVs. Given the triplet d � " - � -  " e we can compute the RF bucket area « in eVs [4]« d � " - � -  " e�� @ 2�¬� ®d &(' e(¯°   E²± @ � "  � "�	�
�Y³ ´ o "	´ E²±¶µ  ��· d  " eH¸ � (18)

The first factor is constant (if the harmonic number is kept constant). The second factor depends on the
energy only. The third factor shows the influence of the RF voltage and the stable phase: · d  fe is a non-
linear function of the stable phase angle. It is equal to one for �¹§ and

2�ª ��§ (stationary bucket) and drops
to � � ¨ for ¨ & § or

2JºSª § [4]. At injection, the energy spread and bunch length are defined by the injector.
We must match the RF bucket to these parameters and this defines the bucket area « + . From Liouville’s
theorem we know that the emittance is invariant during acceleration [2]. The bucket area should thus also
be kept constant. In practice, however, the RF manipulations will blow up the emittance and we wish
to increase the bucket area at some critical points in the cycle (just after transition for example). Once
the desired bucket area is defined through the cycle, we can merge Eqs. (18) and (6) to get a system of
two equations with two unknowns � and  " . By solving this we obtain the appropriate values for � (see
Fig. 4) and  " (see Fig. 1) through the acceleration cycle.
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Fig. 4: Variation of the RF voltage during the proton cycle in the CERN SPS (acceleration from FHG GeV to GJILK GeV. Transition

at M:N GeV). Courtesy of T. Bohl, CERN SL/HRF.

1.6 Bunch transfer function for dipolar motion
In Section 1.3 we examined the motion of a single particle. Let us now consider the bunch as a statistical
collection of many particles, each particle oscillating around the synchronous phase. We wish to derive
an equation for the motion of the centre of charge of the bunch. Let us freeze the motion at a given
instant

0
and let � d �fe be the probability density function for the phase  of the particles. ( � d �fe / � is the

probability that the RF phase be between � and � ] / � when the particle crosses the cavity.) The first
order moment (centre of charge) » is » ��½¼¾ #� d  #e /  (19)

where the integration covers the entire bunch. Let »_  be » ¿gÀ #" . We have»_  U�Á» ¿gÀ " �²¼Â #� d  fe /  bgh " � (20)
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By definition the probability density function integrates to 1¼Â� d  fe /  U� 2
(21)

so that Eq. (20) can be rewritten»_  Ã�½¼ d  ÄgÅ " eÆ� d  fe /  U�½¼ _  Ç� d  fe /  � (22)

Let us now assume a stationary distribution so that � d �*e does not depend on
0
. Taking the second

derivative of the above equation we get/ u »_  /S0 u �½¼ / u _  /S0 u � d  #e /  � (23)

Now using the synchrotron equation (11) for each particle in the bunch/ u »_  /�0 u �½¼ � g � u " _  ] / _ Zc�
�/�0 � � d  fe /  (24)/ u »_  /�0 u ]`� u" ¼ _  #� d  fe /  U� / _ Z!���/�0 ¼Â� d  fe /  (25)/ u »_  /S0 u ]�� u" »_  È� / _ Zc�
�/S0 � (26)

The above equation is identical to the synchrotron equation describing the motion of each particle. These
cannot be individually observed by the instrumentation. On the other hand the motion of the centre of
charge of the bunch, also called dipolar motion, can easily be monitored.

1.7 The RF frequency
During the acceleration the RF frequency must stay locked to the revolution frequency of the bunch�	�
������ ����� �� � "&('*),+ � �k&('*)%+ � " (27)

where the normalized velocity � " is a function of the momentum
$ "� "É� 2Ê 2 ] µfËÇÌÍ r Q ¸ u � (28)

During acceleration the momentum follows the
�

field according to Eq. (5) and we get�	���Î� �k&('*) + �Ê � u ] µ ¢Í�Ï Ë ÌÐ ¸ u ���mÑ � 2 g 2t u" - (29)

where t " � � "� + (30)

and � Ñ � ¹k&('*),+ � (31)

The above equation for �m�
� is called the frequency programme. We observe that:
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Ò the RF frequency varies with the energy (or the magnetic field) in a non-linear fashion;Ò it can be controlled from a measurement of the magnetic field;Ò the frequency swing depends on the range of t from injection to extraction. For a highly relativis-
tic machine (leptons) where tbÓ 2

, the RF frequency can be kept constant. On the other hand
low energy hadron machines need a precise frequency programme. This is also the case for ion
acceleration (large ËÇÌÐ ratio). Some examples:

Lepton (
� + ��� � ©Y2m2 MeV) acceleration in the CERN SPS from 3 GeV to 22 GeV at constant

frequency 200.395 MHz.
Proton (

� + ��Ôm¨ ª MeV) acceleration in the CERN LHC from 450 GeV (400.789 MHz) to 7 TeV
(400.790 MHz).

Lead ions (208Pb82+) acceleration in the CERN SPS from 5.114 GeV/u (energy per nucleon)
at 197.072 MHz to 160 GeV/u (200.393 MHz).

Original proton acceleration in the CERN PS (1959, h = 20) from 50 MeV (2.9 MHz) to 25 GeV
(9.54 MHz) [5];Ò the choice of accelerating cavity is dictated by the frequency swing: for a large frequency swing,

ferrite cavities are preferred for their important tuning range [6]. For relativistic beams, high Q
cavities operated at higher frequencies are the common choice [7].

2 WHY DO WE NEED A LOW-LEVEL SYSTEM?

2.1 The simplest RF system

(AM)

TX

drive

Modulator

Synthesizer

Ig

Frequency function

Voltage function

beam

RF Cavity
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Fig. 5: Simplest RF system. No feedback loop.

The simplest accelerating system for a circular accelerator or collider is shown in Fig. 5. It consists
of: Ò an accelerating cavity;Ò driven by a power amplifier (TX);Ò whose drive is adjusted in amplitude by a modulator (to vary the accelerating voltage during the

ramp in order to keep the desired bucket area « );Ò and whose frequency is controlled by a synthesizer to follow the desired function �Æ�
� d � e .
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2.2 What will go wrong?
In general the performance of the above low-level system will not be good for the following reasons:Ò The magnetic field fluctuates, so the RF frequency �S�
� is not correct. This causes a displacement

of the orbit _ ) given by Eq. (80) _ )) � t ut#uD g t u _ �	�
��	�
� (32)Ò If the transfer from the injector is of the bunch into bucket type, the parameters of the injected
beam will not be perfectly stable: the phase will be slightly wrong and the energy will not be
perfectly matched to the magnetic field of the receiving machine (radial position error on the first
turn).Ò The RF synthesizer injects phase noise that shakes the bunches as is evident from Eq. (26).Ò The power amplifiers have ripples at multiples of 50 Hz.Ò The gain and phase shift of the power amplifiers may drift.Ò The beam current will modify the accelerating voltage (beam loading).Ò etc ...

The classic control solution is to use feedback loops measuring the slowly drifting parameters and ad-
justing the RF settings accordingly.

3 WHAT CAN WE MEASURE?

3.1 The magnetic field
The magnetic field can be measured with a high precision: in the CERN SPS for example it is measured
with a precision of ¨ ± 2 �ÆÕ�Ö T over a range of

&
T.

3.2 The radial position
Three factors limit the precision of single turn measurements of the radial position of the beam:Ò The sensitivity to the beam intensity: in the SPS the precision is � � © mm for a

2
to
2 � range of

beam intensity [8]. In the LHC the design precision is � � 2 mm for a
2

to ¨(� (pilot to nominal)
range of beam intensity [9].Ò The transverse betatron oscillation: the RF is interested in the mean radial position of the beam
(that is related to the beam energy). If the beam is not injected on the centred trajectory, it will
execute a transverse betatron oscillation that must be filtered out of the part interesting the RF.Ò The local orbit distortion: usually we use only one or two radial pick-ups in the RF low-level
system. These sample the position at one point in the machine. As a consequence the measurement
will differ from the mean radial position in the case of a closed orbit distortion at the pick-up
location.

3.3 The beam phase (longitudinal position)
The phase of the beam is defined as the phase of the Fourier component of the beam current at the RF
frequency. (Note that the beam phase is defined by the beam current while the RF phase refers to the
voltage in the cavity. For a beam at stable phase zero below transition, the beam phase will thus lead
the cavity phase by

' } &
. Above transition, a beam at stable phase

'
will lag the cavity phase by

' } &
.)

If the buckets are not evenly filled around the machine the beam current will have a strong amplitude
modulation at the revolution frequency. Its spectrum thus shows side-bands at �Y�
�Ø×Ù�c� ����� . These must
be filtered out of the beam phase signal to avoid exciting higher order coupled bunch dipole oscillations,
( �ÛÚ 2

), with the phase loop.
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Fig. 6: Direct measurement of the beam/cavity phase. Processing at the RF frequency.

Figure 6 shows a method to measure the phase of the beam with respect to the cavity. The beam
signal is generated by a narrow-band pick-up (cavity resonator) centred at the RF frequency. It is followed
by a limiter (AVC) that provides a constant RF level at its output so that the phase measurement is
insensitive to the beam intensity. The signal from the cavity is processed in an identical chain with an
equal delay so that the signals at the input of the mixer stay in phase as the RF frequency varies. Let  an
be the phase of the beam and  Í be the phase of the cavity� d 0 e���kJlm� d &(' �	�
� 0 ]  Çn
e - (33)é d 0 e���kJlm� d &(' �	�
� 0 ]  Í e � (34)

The mixer multiplies the signals on its RF and LO portsê d 0 e���kJlm� d &(' �	��� 0 ]  Çn
eHkJlm� d &(' �	�
� 0 ]  Í ea� kJlm� d º�' �	�
� 0 ]  Çn ]  Í e ] kJlm� d  Çnagh Í e& (35)ë d 0 e�� kJlm� d  ÇnìgÅ Í e& � (36)

The Low Pass Filter (LPF) must provide a large attenuation at multiples of the revolution frequency. An
alternative is to sample its output at the revolution frequency to produce one phase information per turn.

In theory, phase measurements are insensitive to the beam intensity. In practice the phase shift
introduced by the limiter in the beam signal path will vary with the level of its input signal. The system
of Fig. 6 is used to accelerate the LHC proton beam in the CERN SPS. The frequency swing is only2 ¨(� kHz at

& �m� MHz. Narrow-band limiters have been designed with ×Î¨Y§ phase shift for
¬ � dB input

dynamic range in the above frequency range. When the frequency swing is large the system shown in
Fig. 7 is preferred. The beam signal from a wide band pick-up (Electrostatic or Wall Current Monitor)
is heterodyned to an Intermediate Frequency (IF) and followed by a fixed Band-Pass Filter (BPF) at
the IF. For large frequency swings this solution presents the advantage of processing the signal at a
fixed intermediate frequency (AGS booster at BNL [10], fixed target beam in the CERN SPS, CERN
PS [11]). The LO frequency remains at a fixed frequency offset with respect to the RF during the
acceleration: ��íïîÎ�.�	�
��g��	ð?� . The BPF at the intermediate frequency selects two bands in the pick-up
signal: �míïî ] �	ð?�����	�
� and �(íñîag[�	ð?�����	�
��g & �	ð?� . This latter band is called the image. If necessary the
noise present in this band can be rejected with the RF BPF. The IF BPF must be narrow enough to reject
the sidebands at �m���,×¶�c� ����� . (In the CERN SPS we use an IF at

2 � �ñò MHz. The BPF is a 10.7 MHz
crystal filter that rejects the 43 kHz side-bands.)
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Fig. 7: Heterodyne system for the measurement of the beam/cavity phase. Processing at the IF frequency.

4 WHAT SHOULD BE CONTROLLED?

4.1 Controlling the RF phase seen by the beam: the phase loop
Motivation: The noise in the RF system will excite coherent longitudinal oscillations of the beam. Such
an oscillation will also be triggered by a phase or energy error at injection if transfer is of the bunch-into-
bucket type. In lepton machines the synchrotron light may provide sufficient natural damping. In hadron
machines, however, these oscillations will persist, resulting in emittance blow-up due to filamentation
and finally beam loss because the bucket area will be too small. Figure 8 shows a simulation of the
injection into the 200 MHz LHC bucket with a small phase and energy error. The spread in synchrotron
frequency as a function of the deviation from the synchronous particle causes a filamentation of the
bunch: the particles with large deviations have smaller synchrotron frequencies and drag behind the core
of the bunch. The end result is a severe and often unacceptable blow-up of the emittance.
The cure is easily found if we refer to our mechanical analogy shown in Fig. 2. We must add a friction
term (i.e. a force proportional to the velocity as shown in Fig. 9) so that the phase or energy error is
quickly damped to zero.

The phase loop is shown in Fig. 10:

The phase of the beam  fn is compared to the phase of the RF in the cavity  Í and the error3_  �nHÿ Í �  Í g² Çn ] ' } & g² " is used to correct the frequency of the RF (generated by the Voltage
Controlled Oscillator, VCO) via the feedback _ Za�
� . By averaging over the bunches in the beam, Eq. (26)
for the synchrotron oscillation of the centre of charge of each bunch transforms into an identical equation
for the whole beam / u _  ÇnHÿ Í/�0 u ]�� u" _  ÇnHÿ Í � / _ Zc�
�/S0 � (37)

We now introduce a feedback term _ Z!�����\g�� ¥ _  ÇnHÿ Í (38)

3 The V � M term is due to the comparison of the phase of the beam current to the phase of the cavity voltage. For a beam at
stable phase zero below transition, the beam phase will thus lead the cavity phase by V � M .
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Fig. 8: Phase and energy error at injection into the LHC (450 GeV, 4 MV RF at 200 MHz, ������� T F�F kHz). Simulation of
the filamentation of the bunch. First turn at top left. Later plots to be read from left to right and from top to bottom. 50 turns

between plots. Courtesy of J. Tuckmantel, CERN SL/HRF.
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Fig. 9: Damping of our mechanical analogy for the synchrotron oscillation

−

+

Discriminator
Phase

offset

Stable phase
program

PU

RF phaseCavity phase

RF Cavity

Beam phase

VCO

TX

Beam−Cavity 

Phase loop
amplifier

phase error 

PSfrag replacements


��
�

��

ö����#Ý1Þ
� ��� ���#Ý1Þ

� 
��� �

� �^ù â�þ Ü Ý1Þ ä�� å
���

Fig. 10: Phase loop

and this provides the desired damping/ u _  ÇnHÿ Í/S0 u ] � ¥ / _  ÇnHÿ Í/S0 ]�� u" _  ÇnHÿ Í ��� � (39)

RemarksÒ The stable phase  " is computed from a measurement of the RF voltage and the rate of change of
the magnetic field (stable phase programme (7)) and fed as an offset in the phase discriminator so
that the range and linearity of this device are not important. (Note that the systems presented in
Section 3.3 generate a signal proportional to the cosine of the phase error).Ò A static error in the stable phase programme will introduce a frequency error if the phase loop
amplifier is DC-coupled. To avoid this, the phase loop can be AC-coupled. This method is used in
the PS accelerator at CERN. It is explained in detail in Ref. [12].Ò The phase of the RF must change by

2�ª � § at transition. The stable phase programme jumps from Õ" to  ��" � ' gh Õ" .
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Ò As already mentioned, the components at �c� ����� in the phase error signal _  fnHÿ Í must be carefully
filtered out to avoid exciting coupled bunch instabilities.Ò The poles of the closed-loop transfer function are$�� �\g � ¥& × � ¥& ���� 2 g @ & �Ø"� ¥ E u � (40)

For small phase loop gain � ¥ � & �Ø" we have two complex conjugate poles. The impulse response
is a damped sine wave. For � ¥ � & �Ø" the two poles merge on the real axis. The system is critically
damped and no oscillatory behaviour occurs. For larger gains � ¥ ! & ��" one pole moves to a large
negative value on the real axis (i.e. very fast damping) but the other pole moves to the origin. The
system becomes unstable at very low frequency. It presents the behaviour of an integrator. With
a phase loop alone one cannot increase � ¥ much above critical damping. But this limitation will
disappear when we combine the phase loop with another loop.Ò With a phase loop the RF noise is less likely to blow up the emittance (see Section 5.1).

4.2 Controlling the radial position: the radial loop
Motivation: In large machines the transverse aperture is usually very small. In the CERN SPS for
example (

) � 2m2 �m� m) we accept an average orbit displacement of a few millimetres only ( p#"" � 2 � Õ%$ ).
An error in the RF frequency will cause a displacement of the orbit given by Eq. (80)_ )) � t ut uD g t u _ �	����	�
� � (41)

The required precision for the RF frequency therefore depends on the energy. It is infinite at transition!
As a consequence it is difficult to control the beam radial position if the RF frequency is adjusted from a
measurement of the

�
field only (Eq. 29). With a radial loop the required precision can be much relaxed.

Method: Figure 11 shows the radial feedback loop. We measure the radial displacement of the beam
and correct the RF frequency accordingly.
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Fig. 11: Radial loop
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The radial displacement _ ) is proportional to the momentum deviation _ $ , Eq. (81)_ ) � )%+$ " t#uD _ $ (42)

With the above equation we can rewrite Eq. (12)/ u/�0 u _ ) ]`� u" _ ) � �m�4kJlm� d  " e&(' $ " t uD _ Zc�
�4�)( _ Zc�
� (43)

with (�� ���4kJlm� d  Ç"�e&(' $ " t#uD (44)

With the feedback loop ( _ Z^�
�4�\g�� � _ ) ) the equation of motion becomes/ u/�0 u _ ) ]`� u" _ ) � g*(è� � _ ) (45)

or / u/�0 u _ ) ] µ � u " ] (Y� � ¸ _ ) ��� � (46)

The radial loop does not provide damping since the above differential equation has no first order deriva-
tive term. It only reduces the effect of a frequency error on the radial position.

Consider a small static error +L�
� in the frequency programme ���
� d � e . This produces an error_ Zc�
�4� &(' +
��� in the right-hand side of Eq. (43). Without the radial loop the resulting radial error would
be d &(' (�+��
�Se } � u " wher as the radial loop will reduce it to d &(' (�+�����e }-, � u " ] (è� �'. . The radial loop gain � �
cannot be made arbitrarily large, however, because the transient response of the loop is indeed changing
the beam energy, and our derivation of the longitudinal dynamics assumed that the energy change per turn
was small, so the momentum increment of Eq. (3) could be approximated by the continuous derivative of
Eq. (4). This condition is called adiabatic evolution. The radial loop will respect this condition only if its
time constant is long compared to the synchrotron period

&(' } �Î" . A classic low-level system for hadron
machines will include both a fast phase loop and a slow radial loop as shown in Fig. 12. With these two
loops the equation of motion now becomes/ u _  ÇnHÿ Í/�0 u ] � ¥ / _  ÇnHÿ Í/�0 ] µ � u " ] (Y� � ¸ _  ÇnHÿ Í ��� � (47)

The poles of the closed-loop transfer function are$�� �\g � ¥& × � ¥& ���� 2 g º @ � u " ] (Y� �� u¥ E � (48)

If we choose � ¥ !/! � " and � u¥ !/! (Y� � we get$ Õ i\g�� ¥ (49)$ � i g � u " ] (Y� �� ¥ (50)

The first pole corresponds to the very fast transient defined by the phase loop gain � ¥ . Thanks to the
radial loop gain � � the second pole can now be placed on the real axis at the desired distance from the
origin. The corresponding time constant must however be long compared to the synchrotron period so
that the motion remains adiabatic � u " ] (è� �� ¥ � �Ø" � (51)

This places a bound on the gain of the radial loop.
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Fig. 12: Classic low-level system for hadron machines: phase loop and radial loop

RemarksÒ The phase loop/radial loop tandem has a very good behaviour during transients. At injection, for
example, if the beam is injected with a phase and energy error the first turn will be on an off-
centred orbit and the beam will see a non-zero RF voltage. The phase loop reacts in a few turns
and the RF jumps on the bunch, thereby preventing emittance blow-up. Thereafter the radial loop
will slowly modify the beam energy to drive it back to the centre orbit.Ò If one neglects the delays, the combination of phase loop/radial loop is unconditionally stable. A
comprehensive treatment of the low-level loops in the presence of long delays can be found in
Ref. [13]. Other interesting references are [14] (low-level loops with delays), [15] (application to
the CERN PS in during the 1970s), and [16] (application to the CERN PS Booster).Ò The gain of the radial loop amplifier must be inverted at transition because the sign of the coeffi-
cient ( then changes (Eq. 43).Ò With a radial loop, the noise in the loops changes the radial position and thus the beam momentum.
This may be a problem when the beam is transferred to the next machine or sent to the target.Ò One problem of the radial loop is that it estimates the mean radial position from one or two mea-
surements at discrete points in the machine. As mentioned in Section 3.2, eventual transverse
betatron oscillation and local closed orbit distortion at the pick-up location will introduce errors.

4.3 Controlling the beam frequency: the frequency loop
Motivation: The same dynamic behaviour can be achieved if the radial loop is replaced by a frequency
loop. The advantage of the frequency loop is the better dynamic range and lower noise achievable with
phase measurements than with radial position measurements.
Method: At constant

�
field the radial displacement _ ) is proportional to the beam frequency deviation_ Z!n Eq. (80) _ )) � t ut#uD g t u _ Z!nZ!n (52)
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We can thus replace the radial loop by a frequency loop as shown in Fig. 13.
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Fig. 13: Alternative low-level system for hadron machines: phase loop and frequency loop

Remark: Although the transient behaviour of the systems Figs. 12 and 13 can be made identical by
varying the frequency loop gain as a function of the energy, to follow Eq. (52), there is no control of
the actual radial position with the frequency loop. Beam centring is a function of the accuracy of the
frequency programme �m�
� d � e only. The problem is particularly severe at transition where the beam orbit
can be displaced without any change in the beam frequency (Eq. 52).4 A variant of the system was used
in the CERN SPS when it was operating as a proton–antiproton collider: the measurement of the beam
frequency was replaced by a measurement of the Voltage Controlled Oscillator (VCO) frequency. The
beam was injected above transition.

4.4 Controlling the beam phase: the synchronization loop
Motivation: If the transfer is of the bunch-into-bucket type, the beam in the injector must be synchro-
nized with the RF of the receiving machine before transfer.
Method: We compare the phase of the beam with the phase of the external reference and feed the error
back into the VCO after proper filtering by the synchronization loop amplifier (Fig. 14). The overall
system is described by a third order differential equation. Its analysis is easier if we use Laplace trans-
forms. Taking the transform of both sides of Eq. (37) we derive the beam transfer function

� ¥ d �(e (dipolar
motion) _  ÇnHÿ Í d �	ej� �� u ]�� u" _ Zc�
� d �(ea� � ¥ d �(e _ Z!�
� d �	e (53)

with � ¥ d �(ea� �� u ]`� u" � (54)

In the above equation the same symbols are used for time domain signals and for their Laplace
transforms. The argument d �(e identifies the transform domain. Equation (9) can also be written for the

4 With very precise control of frequency and stable phase it is not impossible to accelerate through transition: this has been
done in the acceleration of ions in the CERN SPS.

161



− −

+

Phase
Discriminator

offset

Beam−Cavity 
phase error 

RF Cavity

TX

PU

Long.

Beam phase

Stable phase
program Cavity phase RF phase

Phase
Discriminator

Beam phase
Ref. phase

VCO

Synchro loop
amplifier

Beam−Ref

External freq.

Generator

Phase loop
amplifier

phase error

PSfrag replacements


 � 
 Ý#3�Þ
 
 

 �

� � � ��� ÝHÞ
� 
�0� �

� � ù â<þ Ü�ÝHÞ ä�� å
� � � �54768�

Fig. 14: Common low-level system for synchronizing two machines before transfer: phase loop and synchronization loop

beam frequency Z^n (in radian per second)/  ÇnHÿ Í/S0 �\g _ Z!n ]�_ Zc�
� (55)

After taking Laplace transforms and rearranging the terms we get the frequency response
�:9 d �(e

relating the beam frequency (actually its deviation with respect to the synchronous particle) to the RF
frequency modulation _ Zìn d �	ea� _ Zc�
�Îgh� _  ÇnHÿ Í d �	e (56)_ Zìn d �	ej� d 2 gÛ� � ¥ d �	e�e _ Zc�
�4� �;9 d �(e _ Zc�
� (57)

with � 9 d �	ea� � u "� u ]�� u" � (58)

We now redraw the phase and synchronization loops of Fig. 14 with the above transfer functions
(Fig. 15). The beam frequency deviation _ Z�n is integrated to give _  #n , that is, the beam phase minus the
linear ramp at the synchronous frequency _  �nj�² �nagÛZ " 0 � (59)

The phase loop is kept closed. We derive the open loop transfer function from the synchronization
loop correction _ Z "0<7= Í to the the phase of the beam _  fn

> î1í d �(ea� _  Çn d �(e_ Z "0<7= Í d �	e � 22 ] � ¥ � ¥ d �(e � 9 d �(e 2� � � u "� d � u ] � ¥ � ]�� u" e � (60)

The phase loop gain � ¥ is typically much larger than �%" so that the open loop can be approximated by
two integrators in series, i.e.

2�ª � § phase shift.
> î1í d@? Z�e is plotted in Fig. 16 after multiplication by � ¥ to

render it dimensionless.
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Fig. 15: Phase loop and synchronization loop in the Laplace domain
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Fig. 16: Nyquist diagram of G �IHKJ0L �NM7O   for G � T KIP QR�B�0�S� , T Q T M V M:K�K (rad/s). Case of the LHC proton beams in the SPS at

injection ( �B�0�S� T GJN kHz).
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Even with a very small gain, � "0<7= Í , the closed loop will be on the edge of instability. A clas-
sic indicator of stability is the phase margin, defined as the amount by which the phase of the open
loop response � ¥ > î1í d@? Z�e exceeds g 2�ª �S§ when the modulus of its gain is one [17]. The phase margin
should be minimum

ºS© § for reasonable stability. Figure 16 shows that this condition cannot be fulfilled
even for very small values of the synchronization loop gain � "0<7= Í . The solution is to introduce a lead
compensation network

> "�<U= Í d �(e in series with the open loop [17].> "0<7= Í d �(e���� "�<U= Í 2 ] ·WV¹�2 ] V¹� � (61)

It adds a positive phase shift (dependent on the value of · ), thereby increasing the phase margin.
In our case the desired phase shift is

ºS© § , achievable with a parameter · of 7 minimum [18]. We choose·W� 2 � . The time constant V adjusts the frequency Z � at which the phase shift is maximumZ � � 2
V  · � (62)

Using Kuo’s method [18]5 we get, for a strong phase loop ( � ¥ Ó �Ø" )
VÄi 2�Ø" � � ¥� "�<U= Í 2·YXBZ#[ � (63)

The open-loop response now becomes\ î1í d �(ea� � u "� d � u ] � ¥ � ]`� u" e 2 ] ·YV¹�2 ] V¹� � (64)

It is plotted in Fig. 17. With � "0<7= Í � ¢[ � ¥ and ·W� 2 � the phase margin is
©m© § .
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Fig. 17: Nyquist diagram of G �F]^J0L �NM7O   for G � T KIP QR� �0�S� , T Q T M V MLKLK (rad/s) with the lead compensation network ( _ T F1K ,` T Ì#a ¯5b�	� )

Figure 18 shows the corresponding step response: Beam phase  !n for a step in the reference phase ����H� .
Remarks:Ò The above design is used in the CERN SPS to accelerate the proton beam for the LHC [19],[20].
The phase loop must be much faster than the synchronization loop: in the above design its time
constant6 is

¬ �;c s while the synchronization loop responds in a few milliseconds (Fig. 18).
5 We choose ` such that the open loop gain, after compensation, will be F�P K at the frequency O%d , where the phase shift is

maximum (Eq. 62).
6 This means that it takes Q�K�e s to reduce a phase error at injection by a factor F �Uf .
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Fig. 18: Synchronization loop step response: beam phase O q for a step in the reference phase O ���5g . ( G � T K8P QR�B����� , T Q T M V M:K�K
(rad/s), G Q�hjiUk T �l G � , _ T F1K )Ò The use of a synchronization loop is common in injectors for bunch-into-bucket transfer. The

external frequency generator is then the RF of the receiving machine. Synchronization scenarios
comprise two steps [13]: the frequency of the injector is brought a desired offset

� Z from the
frequency of the receiving machine (step 1). The synchronization loop is kept open and the output
of the phase discriminator d  #���H��g` Çn�e is then a slowly-beating signal at the frequency

� Z . The
synchronization loop is closed on a zero crossing of this signal (step 2).Ò A synchronization loop can also be used during acceleration if the external frequency generator
implements the frequency programme ���
� d � e Eq. (29) [19],[20]. The time constant of the lead
compensation network is inversely proportional to �Î" and must be varied during the acceleration.
Acceleration with a synchronization loop is thus practical only if the synchrotron frequency does
not change too much during the acceleration ramp (i.e. injection well above transition).Ò One can also switch onto a synchronization loop before sending the beam to the targets. The
advantage of this is that the beam energy (radial position) is precisely defined by the external
frequency if the

�
field is assumed constant and stable. The noise and beam intensity-dependent

offsets in the low-level RF will not affect the momentum of the beam delivered to the physicist,
this being a weak point of the radial loop.

5 IMPLEMENTATION

5.1 The all-analog beam control
The all-analog beam control it is a straightforward implementation of the loops. The key component is
the Voltage Controlled Oscillator (VCO). At RF frequencies, varactor-tuned oscillators are common. An
external LC circuit (tank) sets the centre frequency and a variable capacitance diode is used to do the
tuning: By varying the DC voltage applied to this diode one varies the VCO output frequency (Fig. 19).

A typical component broadly used at CERN (PS and SPS) is the MC1648 from Motorola. Its
successor, the MC12149, can be tuned to oscillate at frequencies up to 1.3 GHz. Observed on a spectrum
analyser the output of the VCO is not a pure line but rather a narrow lobe, whose width is caused by the
phase noise. An essential figure of merit is the noise spectrum expressed in dBc/Hz as a function of the
frequency offset from the carrier (Fig. 20). (One plots the ratio of the Power Spectral Density (PSD) over
the power of the RF output on a logarithmic scale.)

Let us now study the effect of this noise on the beam in the presence of a phase loop.
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Fig. 19: Varactor-tuned oscillator (Motorola documentation)
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Fig. 20: Typical phase noise power spectral density m i �nO   for MC12149 with a centre frequency at 750 MHz (Motorola
documentation)
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Fig. 21: Phase loop with the VCO phase noise q
The phase noise is introduced as a small random signal � added at the VCO output (Fig. 21). This

noise modifies the driving term in Eq. (37). Since the RF frequency is the derivative of the RF phase the
noise appears as a second derivative in the right-hand side of the equation/ u _  ÇnHÿ Í/�0 u ]�� u" _  ÇnHÿ Í � / µ _ Zc�
� ] A =A�D ¸/�0 � / _ Z!���/�0 ] / u �/�0 u � (65)

With the phase loop closed we get/ u _  ÇnHÿ Í/S0 u ] � ¥ / _  ÇnHÿ Í/S0 ]�� u" _  ÇnHÿ Í � / u �/S0 u � (66)

The above equation tells us how the VCO phase noise � transforms into cavity/beam phase noise ÇnHÿ Í . From Eq. (66) we derive the PSD r ¥ d Z�e of the latter7

r ¥ d Z�e�� Z [d Z u g � u " e u ]�d � ¥ Z�e u r =#d Z�e � (67)

The second factor on the right-hand side is the spectrum plotted in Fig. 20. The first factor shows the
effect of the phase loop. We shall call it the noise enhancement factor (Fig. 22). It is equal to zero at DC
because slow drifts of the RF phase are followed by the beam and the cavity/beam phase remains zero.
At very high frequencies the factor equals one. The beam does not react any more and the VCO noise
is transmitted directly to the cavity/beam phase. Around the synchrotron frequency the enhancement
factor depends on the phase loop gain. With � ¥ ��� (no phase loop) it is infinite: the centre of charge of
the bunch will thus see large RF phase errors. This will cause filamentation and will result in emittance
blow-up and eventually loss of particle, as previously shown for an injection phase error (Fig. 8). As we
increase the loop gain � ¥ the factor is reduced in an increasing frequency band around the synchrotron
frequency (Fig. 22).

7 The PSD m h �nO   of the output s of a linear system with transfer function H �NM7O   is given by m h �nO   Tut H �NM7O   t ° mwv �nO  where m v �nO   is the PSD of the input x [21].
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Fig. 22: Enhancement of the VCO noise: vjy� v{z P �   z R}| z#v{z as a function of x T�~� � for different values of the normalized phase

loop gain � T����� � (from top trace to bottom: � T K8P I��
F��HF�P I���M )
A similar analysis can be done for the noise injected elsewhere in the beam control system: the

noise in the frequency programme, for example, is injected in the adder at the top of Fig. 21. The result-
ing PSD of the cavity/beam phase will be given by a formula similar to Eq. (67) but the numerator will
be Z u instead of Z [ because of the integrator characteristic of the VCO. The phase loop will also reduce
the damaging effect of this noise.

Nowadays the all-analog implementation is of limited use: the lack of precision in the analog
voltage provided by the frequency programme implies poor control of the orbit since the gain of the
radial loop cannot be infinite.

5.2 Analog beam control with DDS
To increase the precision of the frequency programme the analog VCO is replaced by a digital frequency
synthesizer with a high resolution (i.e. many bits in the frequency word). These are called DDS, for
Direct Digital Synthesizer. They present continuity in the phase of the RF output while the frequency
is changing during the acceleration ramp. Figures 23 and 24 explain the DDS principle: at each clock
pulse the content of the accumulator S is incremented by the digital frequency word F. The accumulator
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Fig. 23: Elementary block diagram for DDS. Reproduced from Ref. [22].
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Fig. 24: Signal generation in DDS. Reproduced from Ref. [22].

regularly overflows, creating a quantized sawtooth whose frequency is proportional to F. The sawtooth
is transformed into a sine wave by the Read Only Memory (ROM) and finally converted into an analog
output. The frequency resolution depends on the number of bits for the control word F and the frequency
range depends on the clock frequency � Í . For example, the AD9854, from Analog Devices, can be
clocked at 300 MHz and has a 48-bit frequency word, thus providing a

2 c Hz resolution for a 100 MHz
range. The noise at the output of a DDS has two components: the first comes from the division of the
phase noise of the clock. It is similar to the noise of an analog VCO but will typically be very small
because it is easy to get high spectral purity from a clock at a fixed frequency. The second component
comes from the non-linearity of the digital quantization: this produces spurious lines whose amplitude
varies in a complex fashion when changing the output frequency. Figure 25 shows the corresponding
spectrum. The Spurious Free Dynamic Range (SFDR) is the component’s important figure of merit:
it measures the minimal guaranteed attenuation of the spurious lines with respect to the desired output
signal.
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Fig. 25: Typical spectrum of the output of a DDS in a 500 kHz span centred on the carrier (0 dBm). Left: carrier at 112.499

MHz; right: carrier at 112.469 MHz. Notice the severe degradation of the spectrum for a small change in output frequency.
The Spurious Free Dynamic Range (SFDR) in this 500 kHz band is here about 65 dB (Analog Devices documentation).
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5.3 The digital beam control
In order to take advantage of the digital precision of the DDS, the low frequency part of the low-level
loops should also be digital. Only the fast acquisition part remains analog. Figure 26 shows the beam
control system used in the CERN PS [11]. The output of the Phase Loop Amplifier (PLA) is digitized
by a 10 MS/s (

2 ��� samples per second) 12-bit ADC and added to the Digital Frequency Program (DFP)
output in the Digital Loop Processor (DLP). The digitally generated frequency is sufficiently accurate to
centre the beam in the vacuum chamber so there is no need for a radial loop. Correction of the frequency
programme is achieved with the Digital Recorder (DR), which reproduces the correction memorized
during a reference acceleration where the beam was accurately centred. This correction is added in the
Digital Arithmetic Unit (DAU).8 In this design the PLA is analog. One could also digitize the phase error
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Fig. 26: Digital beam control system used in the CERN PS (reproduced from Ref. [11])

at the output of the phase discriminator and implement the low frequency part of the phase loop in digital
[24].

8 Performances were, however, much more reproducible with the radial loop in service. At present, this is the case with
most beams accelerated in the CERN PS [23].
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5.4 State variable and DSP implementation
We started our analysis with the description of the beam motion using a second order differential equa-
tion (Eq. 11). Alternatively we can keep the two first order differential equations. Let us use the variablesd�_  - _ ) e 9 . From Eqs. (9) and (80) we get//�0 _  U�\g  � "
k) u+ @ t uD g t ut u E _ ) ]�_ Zc�
�4�)� _ ) ]�_ Zc�
� (68)

with ���\g  � "Lk) u+ @ t uD g t ut u E � (69)

and from Eqs. (8) and (81) //�0 _ ) � ����kJlm� d  " e&(' $ " t#uD _  È��( _  (70)

with (�� ���4kJl(� d  " e&(' $ " t#uD � (71)

The state of the beam is now given by the vector d�_  - _ ) e . Its time evolution follows the equations//S0 @ _  _ ) E � @ � �( � E @ _  _ ) E ] @ 2� E _ Zc�
� (72)

The coefficients of the square matrix vary slowly with time since ( and � vary during the acceleration.
Of course ( � �ú� g � u " . The phase loop and radial loop feedback can now be introduced_ Z!�����\g µ � ¥ � � ¸ @ _  _ ) E (73)

and the equations become //�0 @ _  _ ) E � @ g�� ¥ �úgÛ� �( � E @ _  _ ) E � (74)

The transient behaviour of the system is determined by the eigenvalues � of the above matrix. The
characteristic equation is � u ] � ¥ � ]�d (Y� � g�(��Jej��� � (75)

The eigenvalues are identical to the poles of the second order differential equation (47). We can
choose the eigenvalues and compute the gain coefficients � ¥ and � � during the ramp in order to keep
the same loop behaviour through the cycle. This method is called pole placement in control theory [17]
: one first chooses a cost function that measures the error between the desired and actual responses of
the system in presence of a perturbation. The optimal positions of the poles minimize this cost function.
The use of state variable is somewhat academic for the phase loop/radial loop system. For more complex
loops (synchronization loop with lead compensation for example) a set of four first order differential
equations is required. Pole placement with the above formalism should then bring a more exact derivation
of the optimal values of the gains than the Nyquist analysis presented in Section 4.4. The design of a
beam control using state variables was first proposed at BNL for the AGS [25].

To implement pole placement we need a processor that adjusts the feedback gains during accel-
eration. Nowadays this can easily be done using a Digital Signal Processor (DSP). A DSP is a micro-
processor optimized for fast-floating point operations. The ADSP-2106x from Analog Devices and the
TMS320C6x from Texas Instruments are used in particle accelerators. Figure 27 shows the hardware
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Fig. 27: Beam control system with DSP used at Fermilab for the RHIC (reproduced from Ref. [26])

used at BNL for the Relativistic Heavy Ion Collider (RHIC) [26]. One DSP computes the frequency
(frequency programme) from a measurement of the B field (in fact the magnet current). It also receives
a correction called the radial steering. The output is a 32-bit word providing 6 mHz resolution at 28
MHz. A second DSP, called the State-Variable Feedback DSP in the figure, implements the feedback
loops. The beam phase and radius are measured once per turn (every 12 c s). The feedback gains are
recomputed 200 times during the 74 s acceleration ramp. The output is the frequency error added to the
DDS control word. The loops implemented by the DSP can be switched on and off at will. This is simply
programmed as a C-language if/then statement. The phase loop is normally closed with either the radial
loop (during acceleration) or the synchronization loop (before colliding) [26]. A similar system is in use
in the Fermilab main ring and Tevatron [27].

6 ANNEXE

6.1 Differential relations
Among the four variables

� - $ - ) - � only two can be chosen independently. The other two are then
functions of these. Differential relations describe the variations of any three of these around a valid
working point [3],[4] : _ $$ � t uD _ )) ] _ �� (76)_ $$ � t u _ �� ] t u _ )) (77)_ �� � t uD _ �� ] t u g t uDt u _ $$ (78)_ �� � t u _ �� ] µ t u g t uD ¸ _ )) (79)

For example, from Eq. (79) we derive that, at
�

constant, an error in the RF frequency creates a radial
position error _ )) � t utfuD g t u _ �� � (80)

9 To simplify the notations the subscripts �:�5� are dropped in this section so that ��O now represents �LO q5� k .
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From Eq. (76) we can relate the radial displacement to the momentum deviation at
�

constant_ )) � 2t uD _ $$ � (81)

The slippage factor

o
is defined as the opposite of the ratio of the relative frequency deviation to the

relative momentum deviation at constant
�

. From Eq. (78) we geto �\gWp ��psrr � 2t uD g 2t u � (82)

6.2 Notation #" the stable phase. Í the phase of the RF in the cavity. the phase of the RF in the cavity when the particle crosses it._  U�½ ¿gÀ " �» the phase of the RF in the cavity when the centre-of-charge of the bunch crosses it. Çn the phase of the beam = the phase-of-the Fourier component of the beam current at the RF frequency. ÇnHÿ Í cavity/beam phase. (  fnHÿ Í �½ Í gÀ Çn ] ' } & )._  �nHÿ Í cavity/beam phase minus the stable phase. ( _  nHÿ Í �� Í gÀ �n ] ' } & gh " ).�Ø" the synchrotron frequency in radian/s (Eq. 13).Zc�
� the RF frequency in radian/s. ( Za����� A
¥ kA
D ).Zì" the synchronous frequency in radian/s = the RF frequency that keeps the beam on the centre orbit. It
is a function of the

�
field: Z " � &(' �	��� d � e with �(��� d � e given by Eq. (29)._ Zc�
� a small modulation of the RF frequency around the synchronous frequency. _ Z��
�4�bZc�
�,gWZ " .Z!n the beam frequency =

&('  times the revolution frequency ( Zjn�� A:¥ qA�D )._ Z!n a small modulation of the beam frequency around the synchronous frequency. _ ZúnÎ� Zìn�gÅZ " �A p ¥ qA�D ._  �n the deviation of the beam phase from the linear ramp at the synchronous frequency. ( _  ìnÎ�  ÇnÉgZ " 0 ).
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