
LOW-LEVEL RF SYSTEMS FOR SYNCHROTRONS
Part II: High intensity. Compensation of beam-induced effects

P. Baudrenghien
CERN, Geneva, Switzerland

Abstract
The high-intensity regime is reached when the voltage induced by the beam
in the RF cavities is of an amplitude comparable to the desired accelerating
voltage. In steady state this beam loading can be compensated by providing
extra RF power. Transient beam loading occurs at injection or in the presence
of a beam intensity that is not uniform around the ring. The transients are pe-
riodic at the revolution frequency. Without correction transient beam loading
can be very harmful: the stable phase and bucket area will not be equal for
all bunches. Strong beam loading often occurs with longitudinal instabilities
because the RF cavities are a large contributor to the total ring impedance.
The low-level systems that reduce the effect of transient beam loading will
also increase the threshold intensity of longitudinal instability caused by the
cavity impedance at the fundamental RF frequency. Four classic methods are
presented here: feedforward, RF feedback, long delay feedback, and bunch-
by-bunch feedback. The first three fight against both transient beam loading
and longitudinal instability, if caused by the cavity impedance (at the funda-
mental). The last cures longitudinal instability (dipole mode) caused by any
impedance in the machine but has no effect on beam loading. These techniques
have been made possible by the recent advent of fast digital circuitry and an
emphasis will be put on implementation.

1 THE PROBLEM OF BEAM-INDUCED VOLTAGE

1.1 Transient beam loading
This Section is a brief presentation of the basics of beam loading. Refer to the literature for more details
[1]–[5].

The beam crossing the RF cavity induces an electromagnetic field within it, thereby creating a
decelerating voltage

���
acting on the beam in return (Fig. 1). The accelerating voltage seen by the beam

is thus the vector sum of the voltage produced by the generator
���

and the beam-induced voltage
���

�����	����
��������������
��������
(1)

where
���

is the RF drive and
���

is the beam current.

In the case of a standing wave cavity1, the voltages
���

and
���

are simply the accelerating voltages
at the cavity gap created by the generator and by the beam, respectively [6]. Around one resonance��� the standing wave cavity can be modelled as a lumped Resistor–Inductor–Capacitor (RLC) parallel
circuit. The two impedances

� �
and

���
are proportional, with a ratio that is a function of the main

coupler transformation ratio. To simplify the notations, we will make them equal
����� ��� ����� � ��� (2)

���!� ��� � "# 
%$!&('*)�++(, (3)

1 This applies to ferrite-loaded cavities as well.
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Fig. 1: Left: principle of beam loading. The beam current F9G induces a voltage in the cavity that modifies the total accelerating
voltage HJI . Right: vector diagram relevant to stationary beam loading in a standing-wave cavity.

where
'

is the quality factor and K � � �MLN��� .
For a travelling-wave cavity, which looks like a matched transmission line for the power generator,� � � ��� is proportional to OQPSR�T�UCT , with T being the transit time factor.

� � � ��� is purely real. First it
decreases for increasing V K � V ; it crosses zero at a frequency offset equal to the inverse filling time of the
cavity; and it changes sign thereafter (deceleration) [7]. The impedance

�W��� ��� is also a function of T but
it is not simply proportional to

��� � ��� . It has both real and imaginary parts.

If the bunch intensity is uniform around the ring and if we analyse the situation well after injection,
we are in the stationary situation. In the frequency range of the RF system, the beam current

� �
is a single

spectral line at the RF frequency X(Y�Z . The currents and voltages of Eq. (1) can be represented as vectors
in the complex plane (Fig. 1). Consider a standing-wave cavity. Let [ � ��� be the cavity admittance

[ � ��� � # U �\� � ��� � # U " 
]$(^*� ��� (4)

with ^*� ��� ��& '
"
K �
� �`_ (5)

Making
���

=
�\�

, Eq. (1) can be rewritten

����
a���b� [ ���*c
(6)

���
must compensate

���
to keep the modulus of the total accelerating voltage

�d�
at the desired value

(desired bucket area). This is done by adjusting the amplitude of the generator drive and by detuning
the cavity (angle e�f in Fig. 1). This latter changes the value of the cavity susceptance

^
, while the

conductance
# U " remains constant. In the vector diagram of Fig. 1 the vector

� � �g� � 
h���
follows the

dashed line perpendicular to
�i�

as the cavity tune is changed. The amplitude V �j� V is minimum when
���

and
���

are in phase. This is the desired working point for the power generator. If the stable phase angle
e�k is not zero (acceleration), extra RF power is needed to compensate stationary beam loading. For a
standing-wave cavity, the low-level system needed includes a so-called cavity field amplitude loop, which
adjusts the amplitude of the generator drive V � � V to get the desired V � � V , and a slow cavity tuning loop,
which maintains

���
and

���
in phase (matched conditions at the cavity input minimizing the generator

drive V ��� V ) [1],[3],[5]. No tuning loop is needed with a travelling-wave cavity. It remains a matched
load in the presence of beam loading [7]. Stationary beam loading is compensated by the cavity field
amplitude loop (identical to the one used with standing-wave cavities).

A transient situation is encountered at injection. In the time domain, the beam current suddenly
jumps from zero to the ring distribution and we cannot, in the frequency domain, reduce our analysis to
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the single spectral component at X(YQZ . Equation (1) is still valid, but the two sides are Fourier transforms
with a broad frequency spectrum. Because the RF system is only reacting to a narrow band around X�YQZ we
can consider these signals as a band-limited modulation of the carrier frequency X5YQZ . When injecting a
bunched beam, the voltage

���
varies from zero to the full beam loading. The low-level system must react

in a short time compared with the synchrotron period, to restore the proper bucket area and the correct
phase of the total voltage

�i�
with respect to the beam current

�j�
. Two loops come into action. The fast

beam phase loop, present in most hadron machines [8], tries to restore the stable phase between
� ��� � YQZ �

and
� � � � YQZ � , while the cavity field amplitude loop adjusts the drive amplitude V � � � � Y�Z � V to restore the

desired V ��9� � YQZ � V . For the beam phase loop,
�i�

is the vector sum of the total voltages in all the cavities.
In the case of a standing-wave cavity a third loop (cavity tuning loop) tries to keep the generator current���!� � YQZ � in phase with the total voltage

���9� � YQZ � (matched conditions at the cavity input). The argument� YQZ �l&Jm XCYQZ emphasizes that these loops work on the carrier component only, i.e. the component at
the exact RF frequency. This works fine for small beam current, that is, when the accelerating voltage
is predominantly determined by the generator current. For higher beam currents, a variation of the
amplitude of

� � � � Y�Z � not only results in a variation of the amplitude of
� � � � YQZ � but also of its phase. The

loops that were independent at low beam currents become coupled, and unstable behaviour of the system
results above a certain beam current threshold. Let

� � be the generator current required to produce the
accelerating voltage V �i� V without beam loading and with the cavity tuned to resonance:

� � � V �� VnU " . The
beam loading is characterized by the ratio V �C� VnU � � , which is called the relative beam loading. It can be
shown that the loops become unstable when this ratio approaches two [9]. The result is that the loops do
not lock at injection: the beam is not captured.2

Transient beam loading also occurs if the ring is not filled uniformly (such as in the presence of a
hole reserved for the possible triggering of a beam dump) or if the filling time of the cavities is not very
large compared to the revolution period o Y�prq . The value of

���
will vary in amplitude and phase along

the batch because of the modulation of the beam current
�J�

. The bucket area and the phase of the bunch
with respect to

���
will also be modulated along the batch. They will not be correct for some bunches in

the batch since the beam phase loop and the cavity field amplitude loop only adjust their average values
(values at the carrier frequency X(YQZ ). Modulation of the bucket area may result in a loss of particles from
some bunches in the batch because the bucket area is too small (Fig. 2).

In the case of a collider the modulation of the longitudinal position of the bunches (phase of the
bunch with respect to

�i�
) will displace the collision point for some bunches. In the case of an injector

it will reduce capture efficiency when the bunched beam is injected into the receiving machine because
some bunches will not see the correct RF phase (if the transfer is of the bunch-into-bucket type). For
high-intensity proton machines, the beam loading can be greater than the RF voltage. The nominal LHC
beam in the CERN SPS, for example, (

# _ts(u]v # sw�w protons per bunch, DC current 0.67 A) inducesx _yu MV total in the RF cavities, compared with a matched capture voltage of s5_yz{u MV (bunch emittance
s5_y|{u eVs, bunch length

x
ns). Fortunately transient beam loading compensation is only needed at a few

discrete frequencies: as explained in Section 4.1 (Eq. (69)), the voltage induced by the beam in the cavity
consists of a line at the carrier frequency X!YQZ (stationary beam loading) plus sidebands at multiples of the
revolution frequency on each side of the carrier (transient beam loading). The strength of the sidebands
decreases as we move away from X(YQZ with an envelope that is a function of the ring pattern. Therefore,
transient beam loading compensation is only needed at the frequencies

X � XCYQZ~}a��X Y�prq _ (7)

In the above equation the index � goes from s to � . In practice, however, the spectrum of the beam-
induced voltage is limited to the bandwidth of the RF cavities. Ideally the compensation should cover a
significantly larger bandwidth to get a good correction of the fast components present when the head of
the batch enters the cavity, or when the beam is injected into the machine.

2 If we avoid the strong transient beam loading at injection, by slow accumulation scheme for example, the loops would still
become unstable above the same beam current threshold.
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Fig. 2: Beam loss due to transient beam loading in the CERN SPS (proton beam for LHC, ��� �������C��� protons per bunch in

one batch of ��� bunches). The beam consists of one batch filling 1/11 th ring ( �	�Q� s). The cavity filling time is ���0� ns

(much shorter than the revolution period �0�\� s). Each trace shows the envelope of the bunch intensity along the batch. The

bottom trace shows the first turn ( �0� GeV/c). Traces are separated vertically by 200 turns. The capture voltage is ���9� kV. No

acceleration. A modulation of the bunch intensity develops along the batch after about �9���0� turns.
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1.2 Longitudinal instabilities
This Section is a brief qualitative presentation of the longitudinal instabilities caused by cavity impedance
at its fundamental resonance. A complete theory can be found in Ref. [10]. At high beam current, the
interaction between a bunched beam and an RF cavity can lead to longitudinal instabilities. This process
can be broken down into three steps:� Step 1: when crossing the cavity, the beam induces an electro-magnetic wave called wakefield.� Step 2: this wakefield modifies the accelerating voltage seen by the beam (phase of

���
when the

beam crosses the cavity and bucket height) and acts in return on the current profile along the beam.� Step 3: this modifies the wakefield created on the next crossing.

If the gain and phase shift of the above natural beam/cavity feedback is unfavourable, instability will
grow. The bunches start a longitudinal oscillation at the synchrotron frequency X�k (Fig. 3).

PSfrag replacements

Fig. 3: Mountain range display of a positron bunch in the CERN SPS, from ����� ms after injection ( ��� � GeV/c, bottom trace) to

�Q�0� ms after injection ( �j� � GeV/c, top trace). Time goes from bottom to top. Ten turns ( ��� �0� ms) between traces. Horizontal

window = ��� ns. �9�������0� Hz (1 synchrotron period = 100 turns = 10 traces). The amplitude of the dipole oscillation rises to

3 ns maximum. The RF consists of a fixed ��� �0�0� MV at ����� MHz, plus a second harmonic at �0�0� MHz whose amplitude is zero

on the bottom trace, and rises to ��� � MV on the last trace. The oscillation is here excited by an external cause. Its amplitude (in

ns) decreases as the acceleration proceeds thanks to the addition of the higher frequency RF and natural damping (synchrotron

radiation). A strong quadrupole oscillation is also present.

In the presence of dipolar motion the bunches create a beam current that is periodic at X Y�p�q with
a phase modulation at the synchrotron frequency X k . In Section 4.1 (Eq. (78)) we show that its spectral
power is concentrated at the frequencies

X � XCYQZ�}a��X Y�prq }���X{k (8)
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with dominant sidebands at � � #
. Pure dipole oscillation goes without change in the bunch shape.

But the cavity impedance can excite higher order shape oscillations of the bunch. Figure 4 shows a
quadrupole oscillation: there is (almost) no motion of the centre of the charge distribution but the second
order moment (related to the bunch length) oscillates at twice the synchrotron frequency. Higher order

PSfrag replacements

Fig. 4: Quadrupole oscillation (plus a small dipole oscillation) of a proton bunch at injection from the CPS into the CERN SPS
(26 GeV/c, �0�0� MHz RF). The first non-zero trace at the bottom shows the first turn of the injected beam. Horizontal window

= 10 ns. Proton beam for the LHC. Note that this oscillation is not due to an instability but to an RF mismatch.

modes can also be excited: sextupole, octopole, etc. [10]. Several modes can occur at the same time. The
oscillation shown in Fig. 3 is the superpositions of a dipole and a quadrupole mode. These oscillations
will sample the cavity impedance at the frequencies (Eq. (79))

X � XCYQZ�}a��X Y�prq }���X{k (9)

and the low-level system must thus reduce the apparent cavity impedance there.3 Comparing the above
equation to Eq. (7) we notice that it is more difficult to prevent the longitudinal instabilities than to correct
the beam loading: the synchrotron frequency X7k is typically much smaller than the revolution frequency
X Y�p�q and a complete prevention of the instabilities calls for a reduction of the cavity impedance at closely
spaced frequencies around each revolution frequency line. Fortunately, higher order modes of oscillation
are not as easily excited by cavity impedance (at the fundamental frequency) due to the form factor
and are usually damped by the ever-present synchrotron frequency spread, so impedance reduction is
hopefully only required on the first few synchrotron sidebands [10].

3 The fundamental resonance of the RF cavity is most efficient at driving mode � , when the bunch width is comparable to� times �!�r �¡�� [10]. The quadrupole mode (or even higher modes) can thus be excited by the cavity fundamental with a full
bucket, as is often the case at injection into a hadron machine [11]. In lepton machines the bunches are typically much shorter
than the bucket width and the cavity will mainly excite the dipole mode. Higher order modes can always be excited by the
undesired high-frequency resonances in the cavity or elsewhere in the beam pipe. The low-level systems presented here have
no action on these external causes.
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2 CURES

2.1 Feedforward
Method: Figure 5 shows the feedforward technique: the beam current

�{�
measured by a pick-up is

filtered by a Bandpass Filter (BPF) centred at the centre frequency of the cavity response X � and fed into
the feedforward filter. The feedforward transfer function ¢¤£¦¥ � corrects the generator drive such that the
resulting generator current

�5§ £©¨�¥� gives a cavity voltage
� �

equal but opposite to
���

.

BPF

+
Feed−forward

TX

PU

beam

Drive producing

RF Cavity

+
PSfrag replacements
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Fig. 5: Block diagram of the feedforward method

From Eq. (1) we get

�\��� § £©¨�¥� � L ������� _ (10)

For a standing-wave cavity
�b���±���

so ¢²£°¥ � is a constant gain. In the case of a travelling-
wave cavity perfect compensation is impossible because

�³�
is zero at frequencies where

���
is non-zero

[7]. But partial correction is possible with the help of a more complex filtering function ¢´£°¥ � [12] (see
Section 3.4). In practice the delays in the cables and in the electronics do not permit measurement of
the beam current and correction of the cavity voltage in the same turn. An intentional delay of one full
turn is thus implemented in the chain.4 Advantage: The feedforward loop is closed through the beam,
but from the electronics point of view it is an open-loop system. As such it is not limited by the time
constant inherent in a closed-loop system such as the long delay feedback (Section 2.3). At injection the
beam current is measured on the first turn and the full compensation can be applied on the second turn.
This makes locking of the beam phase loop possible at injection, even with high beam currents.
Limitation: The drawback is that this open-loop system is very sensitive to gain and phase drifts of
the RF generator. This limits the long-term performance of the method. It is also difficult to set up
for a varying RF frequency (acceleration ramp) because the pick-up to cavity delay must be varied
continuously. A phase error of u!µ at the RF frequency will degrade a perfect beam loading compensation
to only 91% compensation (

& OQP¶R & _yu µ � s5_ts(· ).
Example: Figure 6 shows results obtained with the feedforward system installed on the 200 MHz
travelling-wave cavities in the CERN SPS [12],[13].

4 The synchrotron frequency �9� is typically much smaller than the revolution frequency � ��¸¦¹ . The current profile along the
beam therefore varies very little in one turn.
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Fig. 6: Transient beam loading voltage measured in the CERN SPS 200 MHz TWC cavities with the LHC beam (1 batch =

81 bunches spaced by 25 ns, �~�º��� �¼» protons total, 500 ns/div). Left: feedforward OFF. Right: feedforward ON. The bottom

trace is the beam current F G measured with a wide-band pick-up, the upper two traces are the I and Q components (AC coupled)

obtained by demodulating the total cavity voltage H I with a Local Oscillator (LO) at the RF frequency (see Section 3.1 for

details on I/Q demodulation). F »½²¾b» measures the power of the cavity voltage error.

2.2 RF feedback
Method: RF feedback around an amplifier is generally used to reduce the effects of the drifts in gain
and phase encountered with power amplifiers. It also reduces distortion by flattening their response: this
closed loop makes the overall response substantially independent of the response of the amplifier itself
[14]. We can use it here to reduce the influence of the beam-induced voltage by effectively reducing
cavity impedance. The principle is shown in Fig. 7. A probe measures the total accelerating voltage in
the cavity

���
. It is compared to the desired voltage

� Y�p�Z and the error is used to regulate the drive of
the power amplifier. The RF feedback is a closed-loop system. As such it is relatively insensitive to the

+

−

beam

TX

delay  T
Loop

Desired voltage

RF Cavity

PSfrag replacements
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Fig. 7: Block diagram of the RF feedback method

small drifts of the gain and phase of the power generator. It is very easy to implement on a single-cell
cavity. RF feedback on a multi-cell cavity is much more complex: a cavity consisting of Ã identical
cells coupled together will show Ã closely spaced resonances corresponding to its Ã modes (phase shift
of

&Jm ��U�Ã between cells). Since the coupling between two adjacent cells is slightly different for the
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different modes, the phase shift from
���

to
��

will be different. A filter must be placed in the probe
signal to adjust the open loop gain and phase independently for each resonance within the bandwidth
of the system [15]. Otherwise the undesired resonances will make the loop unstable even though the
corresponding field in the cavity may be harmless to the beam.
Limitation: The unavoidable loop delay o clearly appears in Fig. 7 because it limits the achievable
impedance reduction. Figure 8 shows a block diagram of the RF feedback in the Laplace domain: Ä is
the gain of the return path, Å is the amplifier gain and Æ7Ç�È k is the delay operator.

−+

+
+

RF Cavity

Desired voltage

beam

PSfrag replacements
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1 8

; :
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Fig. 8: Block diagram of the RF feedback in the Laplace domain

The beam current
���

is an added perturbation at the input of the standing-wave cavity of impedance�\�!� ��� �Ï����� ��� �Ï�º� ��� . The overall delay in the loop is o . It is the sum of the cable delay and the
delay in the electronics (inversely proportional to the bandwidth of the amplifier).

Near its resonant frequency � � a standing-wave cavity can be represented as an RLC circuit

�º� ��� � "# 
]$ &('*)�++(, (11)

where
'

is the quality factor and K � � �ºLº��� . With the feedback loop closed, the beam loading voltage
is ����� ��� � �º� ���

# 
 ÄÐÅÐÆ Ç ÑQÈ )�+ �º� ��� ����� ��� _ (12)

In the above we have assumed that the phase of the return path has been adjusted so that the phase shift
of the total loop is zero degrees at the frequency ��� . Therefore a large open loop gain ÄÐÅ " leads to a
good impedance reduction. The stability of the loop imposes a limit: outside the �³� U ' band the cavity
is purely reactive �º� ����Ò "$ &(' )�++(, _ (13)

The phase shift is thus L�Ó Ô . A classic indicator of stability for a feedback loop is the phase margin,
defined as the amount by which the phase of the open loop response exceeds L m when the modulus of
its gain is one [16]. To keep a phase margin of Ó Õ , the open loop gain must have decreased to 1 when the
delay o has added an extra L Ó Õ phase shift, that is at K � � ÓÕ È

ÄÐÅÖV �º� mx o � V5× #
(14)

ÄÐÅ " ×
m
&
'
���

#
o

� ÄÐ¨�ØQÙ(Å " _ (15)
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Let
� Z ��Ú5� ��� be the apparent cavity impedance with the feedback loop. From Eq. (12) we get

� Z ��Ú5� ��� ������� ��� U ����� ��� �
�º� ���# 
 ÄÛÅÜÆ Ç Ñ�È )�+ �º� ��� _ (16)

Using the dimensionless variable Ý � K � o and the value of ÄÞ¨�Ø9Ù(Å given by Eq. (15) we can rewrite� Z ��Ú7� ��� as
� Z ��Ú7� ��� � wßáà

wßáà�â 
 Æ Ç Ñ Ù 
]$ ÕÓ
ßáã�ä�å�àßáà Ý _ (17)

At resonance, we have � Z ��Ú�� �æ��� � "# 
 ÄÐÅ " _ (18)

A reduction of the apparent cavity impedance is thus possible only if ÄÐÅ " is larger than
#
. As-

suming that ÄÐÅ "èçéç #
, the first term in the denominator of Eq. (17) can be neglected and

� Z ��Ú can
be plotted as a function of Ý � K � o for different values of Ä (Fig. 9). For Ä � Äº¨�Ø9Ù ( ê � #

), the
frequency response presents a | dB overshoot on the edges of the passband. This is avoided by reducing
the gain to s5_ìë ÄÐ¨�ØQÙ ( ê � s5_ìë ). This flattens the frequency response in the passband, but the achieved
value of the impedance at resonance ( Ý � s ) is | dB larger. The figure also shows the effect of increasing
the feedback gain above ÄÛ¨�ØQÙ ( ê � # _y| ): the strong overshoot in the frequency response indicates that
we are approaching the instability limit.
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Fig. 9: Modulus of the apparent cavity impedance for three values of the normalized feedback gain û³�¤ü�¡�ü ã�ä�å as a function

of ýW�¤þ�ÿ��

The minimum achievable value for the apparent cavity impedance at resonance ( K � � s ) is 5

" ¨���� � "# 
 ÄÜ¨�Ø9Ù(Å " Ò &
m "' ��� o _ (19)

The ultimate performance depends only on the cavity geometry " U ' and the loop delay o . The lesson
is that the delay must be kept short, i.e. a broadband amplifier located as close to the cavity as possible.
The achievable bandwidth is a function of the loop delay only. For the flat frequency response ( Ä �
s5_ìë ÄÜ¨�ØQÙ ) we get

K � Ç ����� Ò # _y|o _ (20)

5 If the flat frequency response ( ü��*��� ��ü ã�ä�å ) is preferred, the impedance will be � dB higher.
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Examples: The present RF system of the storage ring at the Synchrotron Radiation Research Center
(SRRC) in Taiwan consists of two independent and identical chains [17]: a zJs kW klystron is connected
to a warm pill-box cavity via a circulator (Doris cavity, uJs{s MHz centre frequency,

'
	 � # x uJs{s ). It has
been decided to replace this system by a single superconducting cavity [18]. As a first step in this upgrade
project, an RF feedback has been tested on the warm cavities. Figure 10 shows the apparent impedance� Z ��Ú with a feedback gain ÄÐÅ " � #{# _ & (or

& #
dB). This measurement is obtained by sweeping the

frequency of the klystron drive and recording the amplitude of the cavity voltage: it is the transfer
function from

� Y�p©Z to
��

in Fig. 8 and it is proportional to V � Z ��Ú V , with a proportionality factor equal to
ÄÐÅÐÆJÇ�È k . The most important parameter is the loop delay o , here equal to

x uJs ns, including the
# uJs ns

group delay of the klystron. From Eq. (15) we derive the maximal loop gain Ä ¨�Ø9Ù(Å " � Ó Ô��+ , wÈ �
# z7_ #{#{# . The flat response of Fig. 9 should thus be obtained with a |Js % lower gain, that is ÄÐÅ " � #{# _ &� ,
in good agreement with the experiment ( ÄÐÅ " � #{# _ & ). Eq. (20) predicts a bandwidth of · & s kHz (two
sided), that is a

'
equal to u x | . This again is in good agreement with the measured

'
of u{z & _ & · . On this

system, the RF feedback reduces the apparent cavity impedance by
#{# _ & .

PSfrag replacements

in dB

Fig. 10: Apparent cavity impedance of the SRRC RF system with an open-loop gain ü���� �N�0��� �

Another example is the RF feedback installed in the CERN PS on the
x s MHz cavities [19]. A

tube amplifier is connected to the warm re-entrant cavity (
' 	 � # s{s{s{s ) via a short ( zJs cm) coaxial

line. The total loop delay, including the amplifier group delay, is only
&{& s ns. The maximal loop gain

is derived from Eq. (15) and we get Äé¨�Ø9Ù(Å " � Ó Ô �+(, wÈ � &�Cx
or

x · dB. The system is operated with a
gain of

x | dB, i.e. half the maximal value. This feedback reduces the cavity impedance at the resonance
by a factor of

# x s .

2.3 Long delay feedback
Method: In the previous section it was concluded that the amplifier was best located close to the cavity
for a good reduction of beam-induced effects with RF feedback. The amplifier is, however, often placed
outside the accelerator tunnel in order to ease maintenance and reduce down-time in case of failure. In
that case, impedance reduction is still possible if the cavity is not narrow band. It is first noted that beam
loading needs only to be compensated at the frequencies (Eq. (69))

X � XCYQZ�}a��X Y�prq (21)
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while the prevention of instability calls for a reduction of the cavity impedance at the frequencies
(Eq. (79))

X � XCYQZ�}a��X Y�p�q }���X k _ (22)

The synchrotron frequency X k is typically much smaller than the revolution frequency X Y�prq . We thus
conclude that our feedback needs gain around the revolution frequency lines only, and in a bandwidth
sufficient to include the first synchrotron sidebands. The long delay in the loop will not affect the phase
at these frequencies if it is an exact multiple of the revolution period o Y�p�q . Figure 11 shows the block
diagram of the long delay feedback [20]: the cable and electronics delay o is extended to one full turn
in the feedback loop. The phase of the correction is thus s µ at multiples of X Y�prq . It is wrong by

#  s µ at
the centre, between two revolution frequency lines. The open-loop gain must have dropped to a value
smaller than

#
in order to maintain the stability of the loop there. The frequency response of the filter

(including the delay of one turn) is shown in Fig. 12. It is similar to a comb with high gain plus zero
phase shift on the revolution frequency lines, and low gain plus

#  sµ phase shift in between.
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Fig. 11: Block diagram of the long delay feedback method

The comb filter is easily implemented with digital technology.6 The clock X § , used to sample the
input signal, is obtained by division of the RF frequency X YQZ so that

X § ��� X Y�prq _ (23)

Inside the digital filter a delay of
�

clock periods therefore implements an exact revolution period, i.e. a
delay of one turn. And this remains true with the RF frequency varying during acceleration. The transfer
function of the filter7, including the one-turn delay, is

¢ § £©¨ ����� � � Ä
# L��# L�� � Ç�� � Ç�� (24)

6 Section 4.2 presents the basics of digital filters.
7 Transfer functions and z-transforms are explained in Section 4.2.3.

186



0.5 1 1.5 2

0.2

0.4

0.6

0.8

1

PSfrag replacements

in dBó
Gain [linear]

Phase [deg.] ÁÁ! #"%$
0.5 1 1.5 2

-150

-100

-50

50

100

150

PSfrag replacements

in dB

Gain [linear]

Phase [deg.]

ÁÁ  #"%$
Fig. 12: Frequency response of the revolution frequency comb &('*) ã G�+-,/. ( 0��N�Q�0¡���� ). Although the phase slips by 1 halfway

between two successive revolution frequency lines, the gain has decreased enough to maintain stability.

Limitation: The parameter � fixes the bandwidth of the filter around each revolution frequency line

K²X Ç ��� � Ò #
&Jm2� � # L���� X § � #

&Jm � # L���� X Y�p�q (25)

where the approximation holds for a value of � close to
#

(small passband). It also fixes the reduction of
the transfer function at half distance between passbands (where

� � � L #
)

¢²¨3��� � Ä
# L��# 
 � Ò Ä � # L4�5� U & _ (26)

To maintain reasonable stability, the open-loop gain must be significantly below
#

when the phase ism
[16]. It is usual to impose a gain margin of

# s dB ( Ò # U | linear). We get

Ä � # L���� U & × # U |�_ (27)

The impedance reduction in the passbands is equal to Ä . Equation (27) shows that a large reduction
is possible with a value of the parameter � close to

#
. However, Eq. (25) shows that the passband then

vanishes. This may not be a problem for the compensation of the transient beam loading (except at
injection, see below) but a bandwidth covering at least the first synchrotron sidebands is necessary if the
long delay feedback is to act against longitudinal instabilities. The optimal value of � therefore depends
on the synchrotron tune

' k � X{k0UJX Y�prq . The smaller the tune, the more efficient the long delay feedback
can be.

Another solution is to use a dedicated system to compensate the beam loading with a transfer
function ¢ § £©¨ ����� � given by Eq. (24) and a parameter � very close to

#
. A second system with a different

transfer function having gain only on the first synchrotron sidebands (double peaked comb filter) will
fight against the dipole mode longitudinal instabilities [21]. An implementation of this double-peaked
comb filter is presented in Section 3.3. The transient response at injection may also limit the value of� even though we are only concerned by beam loading. The time needed at injection to compensate
beam loading is inversely proportional to the bandwidth K²X Ç ��� � . If this time is too long compared to
the synchrotron frequency, the mismatch between the bunch emittance and the beam loaded bucket will
last sufficiently to create loss of particles. It may even prevent the locking of the beam phase loop.
This is unlike a feedforward compensation, which corrects the transient beam loading on the second turn
(Section 2.1).
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Remark: In this section we have not included the cavity impedance
�~�

in the open-loop response.
If the long delay feedback is used alone on a narrow band cavity, the open-loop response will be modified
by the cavity impedance

�b�
and the gain and phase shift will not be equal on all frequency lines. Good

and stable overall performances will not be easily achieved. In the case of a high
'

cavity the long
delay feedback is best used in conjunction with an RF feedback (Section 2.2) that effectively transforms
the narrowband impedance of the cavity into a broadband response. The long delay feedback is then
further reducing the impedance on the revolution frequency lines, in the band where the RF feedback has
flattened the cavity response. The whole system is shown in Fig. 13. The drive producing

� Y�p�Z will be
generated by the slow cavity amplitude loop and the beam phase loop of the low-level system, which,
respectively, try to keep the modulus and phase of

�d�
at the desired values. They only act on the line

at the exact RF frequency X(Y�Z . In order to avoid the interference of the long delay feedback with these
loops the passband, centred on X(YQZ , is best cancelled in the comb response. An elegant way of rejecting
this band is presented in Section 3.1. This combination of RF feedback and long delay feedback is used
on the |{u & MHz superconducting cavities in the CERN SPS. In the CERN PS it is used on the ferrite
cavities [22]. Travelling-wave cavities are different [7]: their bandwidth is large enough for a long delay
feedback alone, without RF feedback. As seen from the generator they present a matched load even in
the presence of beam loading, so no tuning is needed. The two impedances

�~�
and

���
are, however,

different and vary in a complex fashion with frequency. When designing the long delay feedback it is
therefore necessary to consider the

� �
impedance. The

& s{s MHz travelling-wave cavities of the CERN
SPS are equipped with a long delay feedback whose response includes a Post Filter ¢ ¥ Z ��� � in series with
the classic comb ¢ § £©¨ ����� � . The Post Filter compensates the effects of the cavity response

�³�
[12],[13].

2.4 Bunch-by-bunch feedback
Method: The last method does not involve the RF cavity, neither as a probe nor acting on the beam. It
will have no effect on beam loading: its goal is to prevent dipole mode instabilities. It is broadly used
in high-intensity lepton machines (synchrotron light sources). The principle is shown in Fig. 14. The
longitudinal oscillation of each bunch (dipole mode, shown in Fig. 3) is measured independently. The
corresponding signals are processed in parallel in order to generate a dedicated longitudinal kick on each
bunch. The kicks are adjusted so that they reduce the amplitude of the oscillations [23].

Let 6e Ú be the phase of the RF when the centre of charge of the bunch of index ê crosses the
pick-up. We saw in the first part of these two lectures that, in the presence of a modulation of the RF
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Fig. 14: Block diagram of the bunch-by-bunch feedback method ( M bunches)

frequency N � YQZ , the longitudinal motion of the centre of charge of each bunch obeys the equationO Ô NP6e ÚORQ Ô 
TS Ô k N 6e Úé� O N � Y�ZORQ U (28)

where N
6e Ú�� 6e Ú L e�k . e�k is the stable phase and
S k � &Jm X{k [8]. A similar equation can be written if

the driving term is a small momentum kick K?VO Ô NP6e ÚOWQ Ô 
TS Ô k NP6e ÚÛ�YX[Z ��\9] � Ô&Jm " Ô� V K?V^U (29)

where X is the slippage factor related to the energyX � #_ Ô� L #_ Ô (30)

with _ �a` U ` � (
` � being the rest energy), _ � is the value of _ at the transition energy, Z is the har-

monic number,
\

is the normalized velocity (
\M�cb U ] ), ] being the speed of light,

&Jm " � is the machine
circumference, and V is the average momentum of the bunch. To obtain damping, we must introduce a
term proportional to the first derivative of Nd6e Ú . This is achieved if we make the momentum kick K?V Ú
proportional to the derivative of the phase error Ne6e Ú

K?V ÚÐ� � O NP6e ÚOWQ _ (31)

The equation of motion then becomesO Ô N 6e ÚOWQ Ô 
TS Ô k NP6e Úé� Lgf Z O N 6e ÚOWQ (32)

or O Ô NP6e ÚORQ Ô 
 f Z O NP6e ÚOWQ 
hS Ô k Ni6e Úé� s (33)

with f Z � Lg� XCZ ��\j] � Ô&Jm " Ô� V _ (34)

Taking as initial conditions for bunch ê a non-zero phase error and a zero frequency error, the
feedback would make the phase error go to zero with a time constant T(Z � & U f Z (if f Z´× &�S k ) in the
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absence of the instability mechanism. The dipole mode instability can be modelled as an additional term,
proportional to the first derivative of Ne6e Ú , with a negative factorO Ô N 6e ÚOWQ Ô 
�� f Z L4f � � O N 6e ÚORQ 
kS Ô k NP6e Úé� s�_ (35)

If the damping rate f Z(U & is larger than the instability growth rate f � U & the feedback will keep the centre
of charge of the bunches stable: no dipole mode instability will occur.
Advantage: Bunch-by-bunch feedback fights against all sources of dipole mode instabilities no matter
where they are located in the machine.
Limitation: Beam loading is not compensated. There is no effect on the instabilities of modes higher
than one either (quadrupole mode, sextupole mode, etc.).
Remark: If the feedback filter has the characteristic of a pure differentiator, the high-frequency noise
in the pick-up signal will severely degrade the performance (emittance blow-up and reduction of life-
time). Since the bunches oscillate at the synchrotron frequency, we can use a bandpass centred at the
synchrotron frequency X!k and implement a phase shift of

m U & . For the synchrotron oscillation the band-
pass will act as a differentiator and the noise present outside the band will be rejected. Rejection of the
DC component is also desirable. We actually measure 6e Ú but must provide a kick proportional to the
derivative of NP6e Ú � 6e Ú L e k . The stable phase offset e k appears as a DC component in the signal 6e Ú
and the filter will automatically remove it. Other offsets in the acquisition electronics will also have no
consequence for the kick. A large bandwidth is required for the acquisition of the phase of each bunch
and for the generation of the kicks. Assuming Ã evenly spaced bunches, the minimum bandwidth is
half the bunch frequency ÃNX Y�p�q U & (250 MHz for PEPII and for the Japanese b-Factory KEKB [24]). At
first sight the requirement for processing power seems discouragingly high. The synchrotron frequency
is, however, much smaller than the revolution frequency (small

' k ). For a given bunch, the momentum
kick need not be recomputed at each turn. We can thus reduce the sampling rate (downsampling), i.e.
acquire the phase of a bunch only every l turns, compute the corresponding kick, and apply the same
kick on the bunch for the coming l turns (interpolation). It may be sufficient to process the signal ten
times per synchrotron period instead of every turn. This would result in a large saving if

' k is small.
The downsampling/interpolation method is treated in detail in Section 3.6.

3 IMPLEMENTATION

3.1 Heterodyning
Motivation: The feedforward and long delay feedback imply complex signal processing in a relatively
narrow band around the fundamental RF frequency X Y�Z . The bandwidth is rarely more than a few tens
of MHz. It is limited by the bandwidth of the RF power chain. On the other hand, the RF frequency
can be as high as uJs{s MHz. When using a digital filter, the processing bandwidth is typically limited
to one third of the sampling frequency (see Section 4.2.1). If the RF frequency is low, the cavity signal
can be sampled directly. This is the case in the long delay feedback of the CERN PS. The RF frequency
remains below

# s MHz. The cavity voltage is sampled at
 s X Y�p�q (from |{|7_ & MHz at lower energy to

|  _ x MHz at higher energy) [22]. Treatment is thus possible up to
# | MHz. The RF frequencies used in

the CERN SPS are
& s{s MHz (travelling-wave cavities) and |{u & MHz (superconducting standing-wave

cavities). They are both equipped with a long delay feedback whose processing bandwidth covers about# | MHz on each side of XJYQZ . The sampling frequency should thus be around
#

GHz (for the |{u & MHz
cavities) if the cavity signal was processed directly, while a more reasonable sampling rate of

x s MHz
will be sufficient for the heterodyne system.
Method: The input signal Ý � Q � at the RF frequency is either the cavity voltage

���
(the long delay feed-

back of Fig. 11) or the beam current
�j�

(feedforward of Fig. 5). It is fed into the RF input of the I/Q
demodulator (Fig. 15).
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A pure sine wave
��� Q � at frequency XR| £ is fed into the LO input. The demodulator decomposes the

signal Ý � Q � into two components that are in phase and in quadrature with
��� Q � , respectively

Ý � Q � � Ýy� � Q � O9P¶R ��&Jm X5| £ Q � 
 Ý�} � Q ��~{� O ��&Jm X5| £ Q � (36)

with
Ýy� � Q � � Ý � Q � OQP¶R �Â&Jm X5| £ Q � (37)

Ý�} � Q � � Ý � Q ��~{� O ��&Jm X5| £ Q � _ (38)

Let � � X � be the Fourier transform of Ý � Q � ; the Fourier transforms of Ý9� � Q � and Ý�} � Q � are�i� � X � � � � X L X5| £ �æL � � X 
 X5| £ �&�$ (39)�P} � X � � � � X L X5| £ � 
 � � X 
 X5| £ �& _ (40)

The signals Ý�� � Q � and Ý�} � Q � are fed into two identical Low Pass Filters (LPF) whose outputs are �C� � Q � and�R} � Q �
[y� � X � � ¢ � X � �i� � X � (41)

[�} � X � � ¢ � X � �P} � X � _ (42)

The I/Q modulator receives on its LO input the sine wave at XF| £ shifted in phase by � . It produces an RF
output signal � � Q � � � Q � � ��� � Q � OQPSR ��&Jm X5| £ Q 
 � � 
 �R} � Q ��~{� O ��&Jm X5| £ Q 
 � � _ (43)

The Fourier transform of � � Q � is

[ � X � � [ � � X L X5| £ � Æ0Ñ�� L [ � � X 
 X5| £ � Æ{Ç Ñ��&�$ 
 [ } � X L X5| £ � Æ0Ñ�� 
 [ } � X 
 X5| £ � Æ{Ç Ñ��& _ (44)

Now using Eqs. (39)–(42) in (44) we get, after simplifications

[ � X � � ¢ � X L X5| £ � Æ9Ñ�� 
 ¢ � X 
 X5| £ � Æ{Ç Ñ��& � � X � _ (45)
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Fig. 16: Top: low pass model. Bottom: BPF implemented by the heterodyne system.

Figure 16 illustrates the above equation: the response at the top is the modulus and phase of the
frequency response of the LPF ¢ � X � . The response at the bottom is the filtering described by Eq. (45).
The response ¢ � X L XR| £ � is identical to ¢ � X � , but shifted by XW| £ , while ¢ � X 
 X5| £ � is identical to ¢ � X �
shifted by L X�| £ . The result is a BPF centred at XW| £ with an amplitude response, in the band, identical to the
low pass model while the phase response is shifted by a constant value � . In a heterodyne implementation
of the long delay feedback, Ý � Q � is the total cavity voltage

� �
. The signal at the LO input of the modulator

and demodulator is the RF frequency ( XA| £ � XCYQZ ). The signals Ý�� � Q � and Ý�} � Q � are AC-coupled to the
digital LPF ¢ § £©¨ ����� � (z-transform given by Eq. (24)). The AC coupling introduces a zero in the overall
filtering at the exact frequency X(YQZ so that the long delay feedback does not interfere with the other
low-level loops (cavity field amplitude loop, beam phase loop, and the possible cavity tuning loop). The
clock frequency for the digital filters is a multiple of the revolution frequency. It is obtained by dividing
the RF frequency. The leakage of the LO at the output of the modulator is not important. It introduces
a small error in the cavity voltage at X(YQZ , but this is corrected by the other low-level loops. The phase
shifter between the LO references fed into the demodulator and modulator is an easy way to finely adjust
the phase of the output at the RF frequency. This implementation is used in the CERN SPS for the long
delay feedback on the 200 MHz travelling-wave cavities. The digital filters are clocked at

x s MHz. The
processing bandwidth is

# | MHz on each side of the RF frequency [12]. In a heterodyne implementation
of the feedforward, the input Ý � Q � is the beam current after bandpass filtering to isolate the interesting
band around the cavity centre frequency X � . The signal at the LO inputs is a sine wave at X � . The digital
filters are DC coupled and implement the delay of one turn. Their clock frequency X § must be a multiple
of the revolution frequency so that the overall delay remains one full turn when the RF varies. In the
case of a travelling-wave cavity the response ¢*£¦¥ � is more complex (see Section 3.4). The leakage of
the LO at the output of the modulator must be minimized because it is not at the RF frequency X�YQZ and
will thus not be corrected by the low-level loops. The CERN SPS

& s{s MHz cavities are equipped with
a feedforward working in tandem with a long delay feedback for the acceleration of the proton beam for
the LHC. The RF frequency ramps from

& s{s5_ & z x MHz to
& s{s5_y|{·{u MHz. The cavity centre frequency

( X5| £ ) is constant at
& s{s5_ &{&{& MHz. The digital filters are clocked at

# U # s the RF frequency (
& s MHz) [12].
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In the range of frequencies used in particle accelerators, I/Q modulators and demodulators are
readily available, for example:� MIQ family from Mini-Circuits: RF/LO · MHz to

# _y· GHz, I/Q DC to u MHz,
x s dB sideband

rejection.� IM/ID family from Pulsar: RF/LO
# s MHz to

# _y· GHz, I/Q DC to uJs MHz, |Js dB sideband
rejection.� QM/SM family from Synergy: RF/LO

& s MHz to
# _y· GHz, I/Q DC to uJs MHz, |Js dB sideband

rejection.

The heterodyne system of Fig. 15 implements an RF bandpass filter using two identical digital low pass
filters. An alternative is shown in Fig. 17: instead of mixing the carrier frequency down to DC, we mix it
down to an intermediate frequency (IF). In order to implement the IF bandpass filter ¢ � Z � X � with digital
technology, the IF output of the mixer must be sampled.
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Fig. 17: Heterodyning: Bandpass filtering at the RF frequency using a BPF at the IF frequency

Let us take, as an example, the long delay feedback presented above. The desired bandwidth is# | MHz on each side of the RF frequency at
& s{s MHz. The use of an IF frequency at

# | MHz, that is
X5| £ � #  ë MHz, is not recommended because the noise in the band from

# z # MHz to
#  ë MHz will

create, at the mixer output, image signals corrupting the interesting signal band (from DC to
& z MHz).

The RF bandpass filter centred at
& s{s MHz first selects the desired signal band with minimal distortion

(from
#  ë MHz to

& # | MHz), and ideally rejects the rest of the spectrum so no image signals are present
at the mixer output. In practice, accepting

#
dB attenuation at the extreme of the signal band ( XYQZ }# | MHz), we will get

& s dB attenuation at X(YQZé} & u MHz using an RF bandpass filter available from
industry (of

x
to u sections).8 The image at the mixer output will thus be rejected by

& s dB if we use
an intermediate frequency at

& u MHz ( XA| £ � # ëJu MHz). At the input of the digital filter the signal will
cover the band from

# &
MHz to |  MHz, implying a minimum sampling frequency of around

# s{s MHz,
compared to the

x s MHz sufficient in the system of Fig. 15. This example shows that the system using
the I/Q demodulator and modulator is less demanding on digital bandwidth. But two identical digital
filters are needed while one is sufficient in the system of Fig. 17.

8 Theoretical attenuation curves give, respectively, ��� dB and ��� dB attenuation at ���0� MHz for a five section Butterworth
and a four section ��� � dB passband ripple Chebishev, with � dB attenuation at ����� MHz. In practice, given these passband
specifications, companies designing custom RF filters (RLC Electronics for example) will propose a ���æ� section filter providing�0� dB attenuation at ���0� MHz.
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In the following sections, we study heterodyne implementations of the feedforward and long delay
feedback systems. One could also implement an RF feedback using an I/Q demodulator, followed by
two digital low pass filters and an I/Q modulator, as shown in Fig. 15. The I and Q components of
the desired accelerating voltage should be subtracted from the I and Q output of the demodulator (cavity
voltage) so that the loop gives precise control of the accelerating voltage [25]. This architecture is used to
linearize power amplifiers in mobile communication systems, where it is called Cartesian feedback [26].
For its application to an accelerator cavity, and if the main concern is beam loading, one must make sure
that the digital processing does not contribute significantly to loop delay, thereby limiting the achievable
impedance reduction. A variant of the I/Q feedback is proposed for the RF cavities of the synchrotron
light source Soleil [27].

3.2 Analog-to-digital conversion and back
The performance (speed and resolution) of the Analog to Digital and Digital to Analog Converters (ADC
and DAC) available on the market are sufficient for our applications. State-of-the-art examples are avail-
able from Analog Devices: 12-bit ADC at

# s(u Msamples/s (AD9432), 14-bit DAC at
# & u Msamples/s

(AD9754). Note that, with a 12-bit ADC covering the analog range of 1 V peak-to-peak, one Least
Significant Bit (LSB) corresponds to

& uJs�� V, i.e. L z{u dBm. The noise in the RF signal plus eventual
glitches on the power supply lines and noise because of poor grounding must stay below that level to
take full advantage of the digital resolution. An efficient ground plane is essential to prevent the pollu-
tion of the sensitive analog signals by the noise due to the fast commutations of the digital circuitry. The
designers of the ADC and DAC provide valuable information (see for example Ref. [28]).

3.3 Implementation using discrete numerical operators
Principle: The filtering realized by a digital filter can be represented as a difference equation relating the
output sequence �W� to the input sequence Ý�� . In our applications � will be the time index: Ý2� � Ý � �áo § � ,
where o § is the period of the clock ( o § � # UJX § ). For example, the output � � of the comb filter ¢ § £©¨ �
(z-transform given in Eq. (24)) is related to the input Ý2� by the difference equation� � � � � � Ç�� 
 Ä � # L��5� Ý � Ç�� U (46)

where the sequence Ý<� Ç�� is obtained by delaying the sequence Ý�� by
�

samples. (Section 4.2.4 shows
how to derive a transfer function from the difference equations.) A linear, constant-coefficients, differ-
ence equation can be implemented with only three basic operations: addition, delay and multiplication
by a constant. The digital filter can thus be realized using three discrete components:� Addition/Subtraction using

# z -bit Arithmetic/Logical Units (ALU) such as IDT7381 (Integrated
Device Technology) or L4C381 (Logic Devices). Operation in

# u ns.� Delay of any depth using First-In First-Out memories (FIFO) such as CY7C42X5 (Cypress) or
IDT722X5 (Integrated Device Technology). An

# 
-bit FIFO of variable depth up to

x
k words.

Operation in
# s ns.� Multiplication using

# z´v # z -bit multipliers such as IDT7216 (Integrated Device Technology).
Operation in

# z ns.

Example: As an example we present the double-peaked comb filter installed on the |{u & MHz super-
conducting cavities of the CERN SPS. Four cavities providing a total accelerating voltage of | & MV
were installed to accelerate leptons to

&{&
GeV for LEP. They are equipped with a strong RF feedback

(Section 2.2) that flattens the cavity response in a band of
#

MHz around |{u & MHz [15]. The tetrode
amplifiers are located next to the cavities and the overall loop delay is uJs{s ns. The SPS is also acceler-
ating a high-intensity proton beam and the impedance of these cavities triggers longitudinal instability
for this beam. Beam loading is not a problem. The ring is almost completely filled with bunches spaced
by u ns, so that the beam current

�j�
has very little power around |{u & MHz. An additional long delay
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feedback was designed to further reduce the cavity impedance at the synchrotron sidebands of the rev-
olution frequency lines. The two systems work together as shown in Fig. 13. The long delay feedback
uses the heterodyne method shown in Fig. 17. The intermediate frequency (IF) is

x
MHz. The LO is

thus at a
x

MHz offset from the centre frequency |{u & MHz. The RF bandpass filter selects a band of
} # _ & MHz around |{u & MHz (

#
dB bandwidth) and gives

# | dB attenuation at } x MHz. Note that the
interesting band is rather small (

& _ x MHz). The digital filter is clocked at
& s MHz. It is a variant of

the double-peaked comb filter proposed in Ref. [21]. The synchrotron tune is so small ( X�k*× #
kHz,

X Y�p�q Ò x | kHz) that the peaks on the sidebands can be realized by placing zeros and double poles on the
revolution frequency lines. The z-transform is9

¢ k � � ��� � � # L � Ç��� # L�� � Ç�� � � # L�� � Ç�� � � Ç�� (47)

with
� � x z & , X § �l& s MHz. The parameter � can be varied. As it gets closer to

#
, the achievable

impedance reduction increases but the peaks move closer to the revolution frequency lines. We use� � | # U | & or � � z{| U z x providing an impedance reduction of
& s dB and

& z dB respectively on the
synchrotron sidebands with the classic

# s dB gain margin. Figure 18 shows the modulus of the frequency
response.
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Fig. 18: Frequency response of the double-peaked comb filter, showing peaks on the synchrotron sidebands of the revolution

frequency lines. Left: ���0� kHz span, � dB/div. Right: enlargement ( � kHz span, � dB/div) around one � ��¸¦¹ line, showing the

two peaks on the sidebands ( 0��¤����¡0���/�©� ��¸¦¹ � ��� kHz).

The corresponding impedance reduction is shown in Fig. 19. The smooth trace shows the cav-
ity impedance with the RF feedback. The comb shows the additional reduction achieved around the
revolution frequency lines with the double-peaked long delay feedback.

In the time domain, the filtering realized by ¢ k � � ��� � can be implemented as the following set of
difference equations (see also Section 4.2.4). The term Ý � is the input and � � the output:b � � � b � Ç�� 
 Ýy� (48)� � � ��� � Ç�� 
hb � L b � Ç�� (49)� � � � � Ç�� _ (50)

Figure 20 shows a direct implementation of the above equations. The delays are implemented us-
ing FIFOs. The multiplications by | # U | & are replaced by subtraction of a shifted version of the operand

9 This z-transform is analysed in Section 4.2.3.
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Fig. 19: Apparent impedance of the CERN SPS ���0� MHz superconducting cavity. The smooth trace shows the impedance

with the RF feedback alone. The second trace shows the additional reduction around the revolution frequency lines with the

double-peaked long delay feedback: 0������Q¡0��� , ���0� kHz/div, � dB/div. The resolution of the measurement is not sufficient to

show the full �0� dB reduction or to separate the sidebands.

from itself. (In two’s complement arithmetic a scaling by | & is easily implemented by shifting the binary
word five positions towards the LSB, with extension of the most significant bit.) Additions and subtrac-
tions are realised in the ALUs.

ALU ALU
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+

+

−

+

ALU

−

+
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−

+
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FIFO
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FIFO
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Delay
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Fig. 20: Implementation of the double-peaked comb filter using ALUs and FIFOs

The advantage of such an implementation using discrete numerical operators is its speed. A new
output signal is available on each clock pulse. A uJs MHz clock rate is easily achievable with

# z -bit
words. It is a straightforward implementation for digital filters containing loops, i.e. with poles in their
z-transform (also called Infinite Impulse Response filters or IIR).
The main limitation is related to the use of fixed-point arithmetic:� Rounding noise: after the shift by five positions (multiplication by

# U | & ) in the above loops, the
binary word must be truncated (or rounded) to remain a

# z -bit word. This rounding creates an
error (called rounding noise) that will propagate to the output of the filter.� Rounding of filter coefficients: the coefficients of the filter must also be quantized. In the above
design we chose � � | # U | & , which can be implemented exactly with

# z bits but, in general, the
coefficients must be rounded to fit the binary word and this will modify the filter response.� Scaling: the input must be scaled properly to guarantee that the outputs of the ALUs do not over-
flow.
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� Choice of structure: given a z-transform, many sets of difference equations can realize it. But
the choice of the realization is important because some structures are much more sensitive to the
negative effects of fixed-point arithmetic than others. In general, if the filter has a high order (many
poles and zeros), a cascade of low-order sections is preferred (bi-quad sections having a maximum
of two zeros and two poles) instead of direct form realization.

This type of implementation does not have much future. There is no new development from
chip designers regarding discrete ALUs and multipliers. New FIFOs are, however, periodically being
introduced.

3.4 Implementation with video products
Principle: Recently (end 1998) a new family of products was introduced for digital image processing
in High Definition TV (HDTV) applications. Their speed and resolution make them ideal for our appli-
cations. The LF3320 (Horizontal Digital Image Filter) from Logic Devices implements a 32-tap Finite
Impulse Response filter (FIR, see Section 4.2.2) at data rate of

 | MHz with a resolution of
# &

bits for
data and coefficients Z � U�Z w U _ _ _ U�Z 	 Ç w��� � Z � Ýy� 
 Z w Ýy� Ç w 
 Z Ô Ý�� Ç Ô 
©¨/¨/¨J
 Z 	 Ç w Ýy� Ç 	Fª w _ (51)

The advantages of such an implementation are� Accuracy: if the input data Ý<� and the coefficients Z � U�Z w U _ _ _ U�Z 	 Ç w are
# &

-bit words in the above
equation, the result �W� must be extended to

& · bits to avoid overflow and rounding (for « � | & ).
Internally, the chip keeps all these bits, and by programming the output scaling one chooses which# z bits come out.� Flexibility: by programming (with an on-board ROM for example or external host), one changes
the filter coefficients, the output scaling and the output limiting. This facility to bound the output
is very attractive in set-ups where the filter output is the drive to a power amplifier. An overflow in
two’s complement arithmetic results in the output of the DAC dropping from the maximum positive
value to the minimum negative value. This fast transient is likely to trip the power amplifier.� It is cascadable for larger filters (more than | & coefficients).� It supports decimation up to

# z :
#

with a correspondingly increased number of filter coefficients.� It is targeted at a promising new market and new developments can be expected.

The disadvantages are� It can implement FIR filters only. These have only zeros in their transfer function (no pole).� The range is limited by the use of fixed-point arithmetic (
# &

bits). It suffers from the need to
quantize the coefficients. Rounding noise is not a big problem. It is here limited to one LSB at the
output since the FIR keeps all bits in the computation.

Example: The performance of the feedforward on the CERN SPS
& s{s MHz travelling-wave cavities

was presented in Section 2.1 (Fig. 6). The implementation uses the heterodyne method shown in Fig. 15.
Each of the two identical digital filters is realized using two FIRs (LF3320) clocked at X § � & s MHz.
The optimal transfer function ¢ £¦¥ � is complex for a travelling-wave cavity because

���
is not equal to

���
.

We have [29]
���!� K ��� �¬¯® � �{° Ô& ± OQP¶R~T�U &T�U &³² (52)

where the phase slip T � K ��� is

T � K ��� � ¬bJ�´± # L bJ�b
²AK � (53)

197



with K � � �öLö�æ� . The term �æ� is the angular frequency of the cavity fundamental resonance,
¬

is the
interaction length of the cavity,

b
is the particle velocity,

b5�
is the group velocity in the cavity, ° Ô is the

series impedance (
S Uj� Ô

), and
� � is the characteristic impedance of the RF chain ( uJs S ). Notice that

� �
is purely real but its sign changes periodically as a function of frequency. The impedance

�E�
is

����� K ��� � L ¬ Ô ° Ô µ�± OQPSRT�U &T�U &¶² Ô L &�$ ± T L OQP¶R~T
T Ô ²¸· (54)

It has both a real and an imaginary part. The naive solution ¢*£°¥ ��� L ��� U ��� will not work for a
travelling-wave cavity because

�b�
vanishes at frequencies where the imaginary part of

�~�
is non-zero.

Let us decompose ¢ £°¥ � into a real and an imaginary part:

¢²£°¥ ��� ¢ Y�p£°¥ � 
]$ ¢ � ¨£°¥ � _ (55)

Since
���

is real valued, our design goal is

¢ Y�p£°¥ � ����
N$ ¢ � ¨£°¥ � ��� ÒgL " ÆA¹ ����º L $!� �4¹ ����º _ (56)

By inspection of
���

, (Eq. (52)), and
�b�

, (Eq. (54)), it follows that the real parts on the two sides can be
made identical:

¢ Y�p£¦¥ � �
¬
x¼» ° Ô&(� � ± OQP¶R~T�U &T�U &½² (57)

and the compensation of the resistive part of beam loading is exact. The impulse response of ¢ Y�p£°¥ � is
rectangular (inverse Fourier transform of ¢ Y�p£°¥ � ), lasting for a time equal to |q¯¾ < # L q ¾q D . In the case of
the SPS cavities this corresponds to

# &
samples at

& s MHz. This is implemented with the first FIR filter
(
# &

coefficients are equal to
#
, the other coefficients being s ). The value

$ ¢ � ¨£°¥ � is implemented with a
second FIR filter. Its impulse response Z � ¨� is limited to | # samples ( L # u × �a× # u ) and must be odd-
symmetric ( Z � ¨Ç � � L Z � ¨� ) so that its frequency response is purely imaginary. Perfect compensation is
not possible, however, because

�b�
is zero at frequencies where the imaginary part of

�³�
is non-zero. We

must therefore choose a criterion for computing the optimal coefficients Z � ¨w U�Z � ¨Ô U _ _ _ U�Z � ¨w!¿ . The details
are presented in Ref. [12]. The outputs of the two FIR filters are finally added together using an ALU
(IDT7381 or L4C381).

3.5 Implementation with Programmable Gate Array (PGA)
The PGA (or Programmable Logic Device, PLD) is a high-density gate array (up to

& s{sÖs{s{s gates on
one chip) that the user can configure to implement the desired function. Modern devices also include a
memory and some specialized functions on the chip (embedded programmable logic arrays).

The advantages of the PGA are:� It helps ensure very compact hardware by minimizing the external connections between chips.� It can be re-configured on the board.� Powerful development and debugging tools are available. It is possible to simulate both the logic
function and the delays to evaluate the possible overall processing rate.� PGAs are widely used and we can therefore expect new developments in the field.

The drawback is that the resulting design will implement fixed-point arithmetic only.

The bunch-by-bunch feedback at the Japanese b-Factory KEKB is an example of an implementa-
tion with PGA [24].

Figure 21 shows a block diagram of the feedback filter. The longitudinal position of each bunch is
measured with a wide band phase detection system (not shown here) capable of distinguishing individual
bunches spaced by less than

&
ns (maximum bunch frequency uJs(· MHz) [31]. The result is an analog
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Fig. 21: Digital filter of the KEKB bunch-by-bunch feedback (reproduced from Ref. [30]). The Field Programmable Gate

Array (FPGA) implements the 2-tap filtering of Eq. (58).

signal whose average value, in each
&

ns window, is a measurement of the phase 6e Ú of the corresponding
bunch. This signal is fed, on the left, into the digital filter shown on the figure. The ADC output is first
demultiplexed in 2 channels, each being further demultiplexed in 16 channels. The processing rate is
thus finally reduced to

# z MHz. The Field Programmable Gate Array (FPGA) QL
# z v &Cx

B made by
Quick Logic [32] implements a subtraction between its two


-bit operands. These are actually the same

time sequence Ý�� , but one is delayed by « samples with respect to the other, thereby implementing a
two-tap FIR filter with fixed coefficients

#
and L # . The output of the subtractor �À� is related to its input

Ýy� by the difference equation � � � Ý � L Ý � Ç 	 _ (58)

The delay « is adjusted to get the required ·Js µ phase shift at the synchrotron frequency. With these
coefficients (

#
and L # ) the FIR filter also eliminates the DC component (stable phase).

The outputs of the | & channels are finally multiplexed and converted into analog (the output signal
is shown on the right of the figure). This analog signal is fed into the IF port of a mixer, receiving
twice the bunch frequency on its LO (not shown here). The RF output drives the amplifiers feeding the
wide band kicker. The design of the digital filter dates from the mid-1990s. The FPGA is only used to
implement the subtraction between two


-bit words, which are properly aligned in time by the memories

(Static Random Access Memories, marked SRAM on Fig. 21). These two functions could be integrated
in a single Embedded PGA chip nowadays, which would make the implementation more attractive. Since
the speed of the components has improved, using the latest technology would also reduce the number of
channels. As an example of the power of modern PGAs, Altera proposes software called MegaCore to
implement FIR filters using its FLEX10KE family. With this tool, it quotes the realization of a

# · -tap
FIR filter (


-bit input) at

# s # MHz throughput rate [33]. In the CERN SPS we have used this technology
to upgrade the electronics of the transverse damper for the LHC beam: a digital filter for closed-orbit
rejection10 has been designed with a single chip FLEX 10K100E from Altera. It works with

# &
-bit inputs

and has a throughput of
 s MHz [30].

10 The minimal digital filter of a transverse bunch-by-bunch feedback produces notches at the multiple of the revolution
frequency and introduces a delay of one full turn [34]: & +-,/. � + �3� ,�ÁRÂg.�,§ÁRÂ¸Ã » . The required ���{Ä phase shift can be
obtained from the betatron phase advance between pick-up and kicker.
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3.6 Implementation with digital signal processors
Digital Signal Processors (DSPs) are microprocessors that specialize in performing repetitive mathemat-
ical operations. Most DSPs are based on the Harvard architecture. The core processor is connected to
two separate memories by two separate buses so that two memory accesses can be made in one cycle.
For example a new instruction can be fetched from one memory while data is fetched from the other. In
the implementation of an FIR (Eq. (81)), one item of data Ý2� Ç � can be fetched from one memory and
one coefficient Zy� fetched from the other memory (if the instruction is already in a third smaller memory
called the cache). All DSPs incorporate a hardware multiplier/accumulator unit, which, combined with
the Harvard architecture, makes it possible to perform a complete floating-point multiply-accumulate
operation in a single clock cycle, including the fetch of the two operands. Older DSPs implement only
fixed-point arithmetic. The ADSP-2106x from Analog Devices and the TMS320C6x from Texas In-
struments are in use in particle accelerators. In the first part of these two lectures [8] the beam control
system of the RHIC at Brookhaven National Laboratory was presented. It uses two DSPs (TMS320C40)
clocked at uJs MHz [35]. Some of the systems presented here can also be implemented with DSPs.

The advantages of the DSPs are:� Modern DSPs implement floating-point operations in the | & -bit IEEE standard. It was shown
above that the limited dynamic range of fixed-point arithmetic results in the need for careful scaling
of inputs and intermediate signal levels to avoid overflow. Here, the need for such scaling is
essentially eliminated by using floating-point arithmetic. Rounding noise is still introduced at each
operation but the signal-to-noise ratio at the output of the filter is significantly better for floating
point arithmetic as compared with fixed-point arithmetic.11 The filter coefficients still need to be
quantized but this is done at constant relative precision.� The industry provides complete DSP systems. For example a printed circuit board containing
several DSPs linked together, external memories, input/output ports and a VME bus for connection
to an external host. Very complete software tools are also provided, such as extensive signal
processing libraries to implement FIR and IIR filters, Fast Fourier Transform (FFT). The prototype
can be tested in an emulator. Debugging tools are also available. The algorithm implemented by
the DSP can be re-programmed at will.� The filtering realized by the DSP can be very complex. For example one could imagine adjusting
the coefficients of the bunch-by-bunch feedback BPF continuously (Fig. 14) so that it remains cen-
tred on the synchrotron frequency X7k during the acceleration. The low-level system developed at
RHIC and presented in the first part of these two lectures [8] is a good example of the sophistica-
tion made possible by DSPs: the feedback gains (radial loop, beam phase loop and synchronization
loop) are varied during the acceleration to keep the poles of the closed-loop response at the optimal
location while the synchrotron frequency varies. Notice, however, that these gains are adjusted at
a very slow rate: only

& s{s times during the ë x s long acceleration ramp [35].� Control and diagnostic functions can easily be integrated. Additional software code can be added
to change the filtering function or to read interesting signals (see the example of ALS shown
below).� The market for DSPs is growing fast. We can expect continuing improvements in their performance
over coming years.

The drawback is that the DSPs are still very slow for RF applications. They may have a very
fast clock frequency, they still have only one multiplier/accumulator unit and will perform only one
multiplication at a time.12 It therefore takes many clock cycles to produce a single output sample when

11 This is obvious if we compare the ��� -bit floating point IEEE standard ( �0� -bit in the mantissa) to the classic � - or ��� -bit
fixed point format. But even with a fair comparison taking the same number of bits in the mantissa of the floating format as in
the fixed-point format one concludes that the output signal-to-noise ratio is better with the floating point implementation [36].

12 The Single-Instruction-Multiple-Data (SIMD) DSPs from Analog Devices have two arithmetic units executing the same
instruction. But performance increases only if two independent filtering channels have to be implemented.
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the DSP must implement a filtering operation. For example, suppose that we wish to use a DSP to
implement a « taps FIR filter for the feedforward presented in Section 3.4 (feedforward on a travelling-
wave cavity). Generating the code using the optimized assembly-language library of the ADSP-21000
family, it takes u 
 « cycles to compute a single output value �C� [37]. Thirty-six cycles are needed to
generate one output of the | # -tap FIR. If the DSP is clocked at

# s{s MHz,13 we get an output signal
every |{zJs ns, compared with the

# &
ns needed by the video filter LF3320 clocked at

 | MHz. In this
application, the sampling rate of the DSP implementation would be

& _  MHz and the useful bandwidth
less than

#
MHz (one-third the sampling rate). In our RF applications DSPs are only a good candidate

if the processing rate can be much reduced by downsampling and interpolation. If parallel processing
is possible, one could also compensate the low rate by using several DSPs in parallel, as shown in the
following example.

The bunch-by-bunch feedback system of the ALS (synchrotron light source) at LBNL is imple-
mented using DSPs (Fig. 22) [23].
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Fig. 22: Block diagram of the longitudinal bunch-by-bunch feedback used at ALS (reproduced from Ref. [23])

The machine parameters are | &� bunches,
&

ns spacing, revolution frequency X Y�p�q � # _yu MHz,
and synchrotron frequency X k � #{#

kHz. The acquisition part is similar to the one implemented at KEKB
and we shall not detail it. The bunch phase signal 6e is fed into the ADC. Recall that, for each bunch ê , the
bunch-by-bunch feedback must implement a separate BPF processing the average bunch phase 6e Ú . Since
the processing of each bunch is independent of the others, we can treat them in parallel, using a bank
of DSPs, each branch implementing one BPF with an « -tap FIR. The throughput rate could be reduced
to a comfortable

# _yu MHz ( X Y�p�q ) with | &� DSPs. Realization becomes possible once we notice that the
synchrotron tune is small (

' k � X k UJX Y�p�q � ë _y|�v # s Ç � ). The phase of each bunch does not change
much between two turns. Let us therefore reduce the processing rate by a factor l : for each bunch,
we treat its signal every l turns only. This process is called downsampling. A reasonable value for the
downsampling ratio l is a fraction of

# U ' k . For Ã bunches the total number of multiply–accumulate

13 Texas Instruments advertises a new ����� MHz DSP including four multiplier/accumulator units [38] (TMS320C64x). We
have not evaluated it yet.
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cycles per second (MAC/s) using an « -tap FIR is14

ÃÅ«�X Y�prql _ (59)

In the case of the ALS, taking
# s samples per synchrotron period ( l � # U � # s ' k ��Ò # x

) and with
a
& s -tap FIR, the processing power required is ë _ts(|³v # sFÆ MAC/s. Considering a modern DSP clocked at# s{s MHz, realizing one multiply–accumulate per cycle, we see that the above bunch-by-bunch feedback

can be implemented using only eight such DSPs, each one processing the signal from
x #

bunches and
producing one output per bunch every

# x
turns. The kick value for each bunch will thus be kept constant

over
# x

turns (Hold–Buffer DAC).15 This derivation is, however, overly optimistic: the ALS design
actually uses

x s DSPs in parallel. In addition the DSPs provide a powerful diagnostic tool. The phase
signal from each bunch can be observed individually. The growth rate of each mode of instability can
be measured by switching the feedback off, letting the oscillation develop, and switching the feedback
back on. This allows measurements in the small-signal regime [23]. Acquisition of these signals is easily
achieved through the existing interface between the DSP and its host computer.

4 ANNEXE

4.1 Spectrum of the beam-induced voltage
First consider a uniform ring distribution with all buckets filled and suppose that the bunch length is
infinitely short. The beam current measured in a pick-up then consists of a series of infinitely narrow
pulses spaced in time by the RF period.Ç!È

� Q � � � � o�YQZ
ª�ÉÊ|vË Ç É N � Q L ¬ oáYQZ � (60)

where
� � is the DC component of the beam current. Using the identityª�ÉÊ|ÌË Ç É N � Q L ¬ o � � #

o
ª�ÉÊ

¨ Ë Ç É Æ Ñ
Ô Ó ¨ �%Í È (61)

the beam current can be rewritten Ç�È
� Q � � � �

ª�ÉÊ
¨ Ë Ç É Æ Ñ

Ô Ó ¨ Z �r  � _ (62)

The corresponding spectrum is an infinite set of discrete lines at the RF frequency and its harmonics:
X � }Ð��XCY�Z . In practice the bunches are not infinitely short. Let Î � Q � be the normalized longitudinal
charge density, the beam current isÇ!Ï

� Q � � � � oáY�Z
ª�ÉÊ|vË Ç É Î � Q L ¬ oáYQZ � �

Ç!È
� Q ��Ð Î � Q � _ (63)

The current

Ç�Ï
is the convolution of the two time domain signals

Ç�È
� Q � and Î � Q � . The spectrum of

the result is thus obtained by multiplying the spectrum of

Ç�È
by the Fourier transform of the bunch charge

density Î . This spectrum still consists of a set of discrete lines at X � }Ü� _ X7YQZ but the amplitude of the
spectral lines in the frequency domain will decrease with an envelope equal to the Fourier transform of
the charge density Î � Q � . The width of the envelope is inversely proportional to the bunch length. The

14 We have neglected the small overhead of � cycles in the total number of cycles � ½iÑ .
15 A proper downsampling/interpolation filter (also called multirate filter) is somewhat more complex. See Section 4.2.5 for

more details.
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bandwidth of the accelerating system around X!YQZ being much narrower than the RF frequency we can
neglect all the harmonics. The non-zero bunch length then only introduces a scaling factor in the spectral
component at XJYQZ . For our analysis the beam current can thus be simplified to

Ç!Ò �§� Z £ Y ¨ � Q �¼Ó O9P¶R �Â&Jm XCYQZ Q 
 e � _ (64)

that is, a single line at the RF frequency. This remains valid if the bunch spacing is a multiple of the RF
period (uniform ring but not all buckets filled), assuming that the bunch frequency (inverse of the bunch
spacing) is much larger than the bandwidth of the RF system so only the spectral component at X�YQZ need
to be considered.

We now consider a non-uniform ring distribution. This is the case if the ring pattern consists of
one or several batch(es) of bunches and one (or more) hole(s) without bunches. As seen in a pick-up (or
in a cavity), the beam current is then modulated by a function � � Q � representing the batch envelope

Ç
� Ø � §!Ô � Q �3Ó� � Q � OQP¶R ��&Jm XCYQZ Q 
 e � _ (65)

The same bunch pattern periodically crosses the pick-up. The modulation function � � Q � is thus periodic
in time with a period equal to the revolution period o Y�prq . We can expand it as a Fourier series and the
beam current becomes

Ç
� Ø � §ÕÔ � Q �ÖÓ ¹ �7� 
 �

w
~{� O ��&Jm X Y�p�q Q � 
 � Ô ~{� O �¦x(m X Y�p�q Q � 
 � � ~{� O � z m X Y�prq Q � 
©¨/¨/¨


Ø×
w OQP¶R

�Â&Jm X Y�prq Q � 
T× Ô O9P¶R �¦x(m X Y�p�q Q � 
T× � OQP¶R � z m X Y�prq Q � 
¨/¨/¨�º OQP¶R ��&Jm XCYQZ Q 
 e � (66)

where �5� U � w U � Ô U _�_�_ U × w U × Ô U _�_�_ are the coefficients of the Fourier series. The amplitude of the coefficients
will typically decrease with increasing index in a manner that is a function of the shape of the batch.
Consider the classic situation where only a fraction f of the ring is evenly filled. By choosing the time
origin so that � � Q � is even-symmetric, we get � � � OQP¶R m f �m f � (67)× � � s�_ (68)

Figure 23 shows the spectrum of the beam current

Ç
��� Q � in that case. It consists of the carrier

frequency XJYQZ plus a set of sidebands at X{YQZW}a� _ X Y�prq . The voltage
�i�

induced by the beam in the cavity
will thus consist of a discrete set of lines at the frequencies

X � XCYQZ~}a��X Y�prq _ (69)

We now return to the uniform ring distribution and consider a beam undergoing longitudinal dipole
oscillations, as shown in Fig. 3. Consider a single infinitely narrow bunch undergoing a pure dipole
oscillation, the measured current isÇ

�
Ò � §ÕÔ5Ù � �n¥�£ |ìp � Q � ��� � o Y�p�q

ª�ÉÊ|ÌË Ç É N � Q L ¬ o Y�prq L 6T�OQP¶R ��&Jm X{k Q 
 � �Q� U (70)

where 6T is the amplitude of the synchrotron oscillation (in time) and Xk is the synchrotron frequency.
Using the identity from Eq. (61) we rewrite the bunch currentÇ

�
Ò � §ÕÔ�Ù � �n¥�£ |yp � Q � � � �

ª�ÉÊ� Ë Ç É Æ Ñ
Ô Ó � Z �Â¸°¹ Ú � Ç¼ÛÜ/Ý�Þ�ß§à Ô Ó Z � �%ª �[á-â _ (71)

Now using the identity

Æ Ç Ñ Ù Ý�Þ�ß{ã � ª�ÉÊ
¨ Ë Ç É � L # � ¨�ä ¨ � Ý � Æ Ñ ¨ ã (72)
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Fig. 23: Frequencies where beam loading must be compensated: spectrum of the beam current F G in the case where only a

fraction è of the ring is filled with bunches ( èÞ� �Q¡Q� )

we get
Ç
�
Ò � §ÕÔ5Ù � �n¥�£ |ìp � Q � ��� �

ª�ÉÊ� Ë Ç É Æ Ñ
Ô Ó � Z �Â¸°¹ � ª�ÉÊ

¨ Ë Ç É � L # � ¨�ä ¨ ��&Jm ��X Y�prq 6T � Æ Ñ Ú Ô Ó ¨ Z � �%ª ¨ �Wâ (73)Ç
�
Ò � §ÕÔ5Ù � �n¥�£ |yp � Q � � � �

ª�ÉÊ� Ë Ç É ª�ÉÊ
¨ Ë Ç É � L # � ¨ ä ¨ ��&Jm ��X Y�prq 6T � Æ Ñ Ú Ô Ó à � Z �Â¸°¹ ª ¨ Z � á �%ª ¨ �Wâ (74)

Around each harmonic of the revolution frequency (at ��X Y�prq ) there is an infinite number of syn-
chrotron sidebands (at ��X Y�p�q 
 ��X{k ). The spectral amplitude of the � th sideband of the � th revolution
line is given by ä ¨ ��&Jm ��X Y�prq 6T � (Bessel function of order � ). The spectral lines falling in the RF cavity
impedance (near the fundamental) have index � Ò Z (where Z is the harmonic number). The amplitudes
of their sidebands are proportional toä ¨ ��&Jm ��X Y�prq 6T ��Ò ä ¨ ��&Jm ZiX Y�p�q 6T � � ä ¨ ��&Jm 6ToáYQZ � _ (75)

When the instability starts growing, the amplitude of the longitudinal oscillation is much smaller
than the RF period. The dominant sidebands are thus the first ones (at ��X Y�prq }*X k ) since, for a small value
of their argument N , the Bessel function of higher order are close to zero ( ä ¨ � N ��Ò � NCU & � ¨ Uj�êé ). Taking,
for example, an oscillation of } # s µ in the RF bucket ( T�U�odYQZ � # s U |{zJs ), the strength of the sidebands
relative to the revolution frequency line will be s5_ts(· for � � #

, s5_ts{s x for � ��&
, s5_ts{s{s # for � � | , etc.

Figure 3 shows an oscillation of larger amplitude: } # _yu ns in the
# s{s MHz bucket ( T�U�o\YQZ � # _yu U # s ),

and the sidebands of large index are not negligible. Relative to the revolution frequency line we get
an amplitude of s5_yu{| for � � #

, s5_ # | for � � &
, s5_ts & for � � | , etc. We show only one bunch in

Fig. 3. The other bunches execute similar dipole oscillations at the same frequency X�k but each bunch ê
has its own phase � Ú . For Ã evenly spaced bunches of equal intensity, each bunch executing a dipolar
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longitudinal oscillation of the same amplitude but with different phases, the beam current isÇ
� p Ø9¨ Ù � �n¥�£ |yp � Q � � � � o Y�prq U�Ãìë Ç wÊ

Ú Ë � ª�ÉÊ|vË Ç É N � Q L ¬ o Y�prq L ê
Ã o Y�prq L 6T�O9P¶R ��&Jm X{k Q 
 � Ú �Q� _ (76)

Following the derivation used for a single bunch, we can rewrite the beam current asÇ
� p Ø9¨ Ù � �n¥�£ |yp � Q � � � �

ª�ÉÊ� Ë Ç É ª�ÉÊ
¨ Ë Ç É � L # � ¨�ä ¨ ��&Jm ��X Y�p�q 6T � Æ Ñ Ú Ô Ó à � Z �Â¸°¹ ª ¨ Z � á � â ë Ç wÊ

Ú Ë � Æ Ñ Ú ¨ �Aí�Ç Ô Ó Ú � Í ë â _ (77)

The spectrum is similar to the one created by a single bunch. The only difference is the last factor,
which combines the phases � Ú of the dipolar oscillations of the individual bunches to enhance or reduce
the spectral lines. We conclude that the spectrum of the voltage

���
induced in the cavity by a beam

undergoing a small longitudinal dipole oscillation contains power only at the frequencies

X � XCYQZ�}a��X Y�prq }���X{k (78)

with the amplitude of the sidebands decreasing quickly with increasing index � .

The quadrupole oscillation shown in Fig. 4 does not modulate the phase of the beam current but
only its amplitude. Since the frequency of the quadrupole mode is twice the synchrotron frequency we
can expect that this mode of oscillation will create dominant sidebands at the frequencies X � X�YQZé}
��X Y�p�q } & X{k . Generalizing to the higher order modes, we conclude that the voltage

���
induced in the

cavity (around its fundamental resonance) by a beam undergoing a longitudinal oscillation has power
only at the discrete frequencies

X � XCYQZ�}a��X Y�p�q }���X k _ (79)

4.2 Digital filters
4.2.1 Nyquist rate

Nyquist theorem states that a continuous-time signal can be sampled without loss of information if the
sampling rate is at least twice the highest frequency present in the signal spectrum. In a mixed signal
set-up, one first filters the analog signal with an analog anti-aliasing filter (low pass filter). This filter
has a stop band starting at a frequency lower or equal to half the sampling frequency. In order not to
distort the signal band, some frequency margin must be left for the transition band (between passband
and stop band), so that the maximum interesting frequency in the continuous-time signal does not exceed
one-third of the sampling frequency.

4.2.2 Finite Impulse Response and Infinite Impulse Response filters

A digital filter is an operator that maps an input sequence Ý9� to an output sequence �W� . If the filter is
linear and invariant in time, the output � � is related to the input Ý � via the convolution� � � Z � Ð Ý � U (80)Z � is the filter impulse response, defined as the output when the filter is excited by a Dirac pulse N � at its
input ( N{� � s for �ïî� s , and N � � #

). If the impulse response is of finite duration the filter is called a
Finite Impulse Response (FIR) filter. Otherwise it is called an Infinite Impulse Response (IIR) filter. An
FIR filter, of impulse duration « samples, realizes the following filtering operation��� � Z � Ýy� 
 Z w Ýy� Ç w 
 Z Ô Ý�� Ç Ô 
©¨/¨/¨J
 Z 	 Ç w Ýy� Ç 	Fª w (81)

It is easily implemented with a tap delay line of length « , fed at its input by the signal Ý�� , and with an
adder that computes the weighted sum of the tap outputs, the weights being the values of the impulse
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response. IIR filters have feedback loops relating the value of the output at time � with the past values
of the output. For example, the filter implementing the recursion��� � � ��� Ç w 
 Ýy� (82)

has the impulse response Zy� � � � for ��ð s and ZÀ� � s for �êñ s . The impulse response lasts forever.

4.2.3 z-transform

The Laplace transform is a very powerful tool for analysing continuous-time linear time-invariant sys-
tems. It provides answers to important questions of stability and frequency response. The equivalent for
the analysis of discrete-time linear time-invariant systems is the z-transform, defined as� ��� � � ª�ÉÊ� Ë Ç É Ýy� � Ç � _ (83)

The transfer function of the filter is the z-transform of its impulse response

¢ ��� � � ª�ÉÊ� Ë Ç É ZC� � Ç � _ (84)

Because the z-transform of the convolution of two sequences is the product of the z-transforms of the
two sequences, it follows from Eq. (80) that the z-transform [ ��� � of the filter output is the product of
the z-transform of its input and the transfer function ¢ ��� � ,

[ ��� � � ¢ ��� � � ��� � _ (85)

The variable
�

is the equivalent of the variable ò for the Laplace transform. It is complex valued. The
poles (zeros) of the transfer function are defined as the values of

�
for which the denominator (numerator)

of ¢ ��� � equals zero. Let us consider the double-peaked comb filter of Eq. (47). We have
�

zeros at�jÚÐ� Æ Ñ
Ô Ó íÂ (86)

for ê � s U # U & U ¨/¨/¨ U � L #
. And

�
poles at� ¥ � � �Â Æ Ñ

Ô ÓôóÂ (87)

for V � s U # U & U ¨/¨/¨ U � L #
. Each pole has a multiplicity of two: it appears twice in the denominator.

Recall that, for continuous-time filters, the frequency response is obtained by evaluating the Laplace
transform on the imaginary axis. This gives the Fourier transform. Similarly, the frequency response of
the digital filter is obtained from the evaluation of its transfer function on the unit circle. Let

S � ZZ '
be the normalized frequency of the input sine wave. The filter output will be a sine wave at the same
frequency, but its amplitude and phase are given by the modulus and phase of ¢ � ÆjÑ

Ô Ó�õ � . Let us consider
the double-peaked comb filter again. Because the zeros are located on the unit circle (Eq. (86)), the filter
will show zeros of transmission at the exact multiples of the revolution frequency as shown in Fig. 18.
The parameter � is very close to one, so that the pairs of poles (Eq. (87)) will be located very close to the
corresponding zero but slightly inside the unit circle. This produces the desired pair of resonances on the
synchrotron sidebands (Fig. 18).

4.2.4 From difference equations to transfer function

From a set of difference equations, we can easily get the filter transfer function by applying the z-
transform to both sides of the equations. Two properties of the z-transform must be recalled:
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Linearity: the z-transform of a sum of two sequences Ý9� and ��� is the sum of the z-transform of each
sequence, � ��� � 
 [ ��� � .

Delay property: the z-transform of a sequence delayed by one sample is
� Ç w times the z-transform of

the original sequence.
Using these properties, we derive from Eqs. (48),(49) and (50)

�A��� � � � � Ç�� �A��� � 
 � ��� � (88)ö ��� � � � � Ç�� ö ��� � 
ì÷ # L � Ç��dø �A��� � (89)

[ ��� � �� Ç�� ö ��� � U (90)

where � ��� � , [ ��� � , � ��� � and
ö ��� � are the z-transforms of the sequences Ý2� , ��� ,

b � and � � respectively.
We can now eliminate

�A��� � and
ö ��� � from the above three equations and we get

[ ��� � � # L � Ç��� # L�� � Ç�� � � # L�� � Ç�� � � Ç�� � ��� � _ (91)

This gives the transfer function ¢ k � � ��� � of Eq. (47). Notice, however, that several different sets of
difference equations will lead to the same transfer function and they therefore realize the same filter. For
example ¢ k � � is also realized by the following difference equation��� ��& � ��� Ç�� L�� Ô ��� Ç Ô � 
 Ýy� Ç�� L Ýy� Ç Ô � _ (92)

However, some realizations will be much more sensitive to quantization effects and the cascade form of
Fig. 20 is often preferred.

4.2.5 Multirate filters

Throwing away l L #
data out of every l data as proposed in Section 3.6 will unavoidably worsen

the signal-to-noise ratio. Also, simply holding the output constant for l turns will introduce distortion.
It is, however, possible to reduce the necessary processing without loss of precision [39]. The input
sequence Ý�� is first processed by a so-called decimation filter (impulse response Z �� ). It is a low pass
filter with a passband extending to the maximal synchrotron frequency Xk Ù ¨�ØQÙ (so that it covers the band
of the BPF) and a stopband starting at X Y�prq U�l L X k Ù ¨�ØQÙ . This puts a first limit on the downsampling
ratio lÖñ X Y�p�q U & X{k � # U &(' k . All input data is used as input to the decimation filter but its output is
computed every l turns only (downsampling). This sequence is fed into the original BPF, called the
kernel filter in multirate filtering, and now operated at the reduced rate X Y�p�q U�l (rejection of the DC
component and of the noise outside the synchrotron frequency band,

m U & phase shift at the synchrotron
frequency). The saving in processing time in the BPF only is proportional to l Ô

because the number
of coefficients required to implement a given passband characteristic (in Hz) scales linearly with

# U�l
if the transition bandwidth is kept constant (from passband to stopband in Hz). We here assume that
all filters are implemented as FIR. The original sampling rate is recovered at the BPF output using an
interpolation filter Z Ò� (upsampling) that produces an output, at every turn, from its input sequence at the
rate X Y�p�q U�l . The interpolation filter must reject the image spectra created by the upsampling process.
This requirement is satisfied if we choose the same filter for interpolation and decimation ( Z Ò� � Z �� ).
Notice that, out of every l samples at the input of Z Ò� (rate X Y�p�q ), l L #

samples are equal to zero. The
unnecessary multiplications by zero are not performed, thereby saving on the overall processing time.
With this multirate scheme there is no degradation in performance compared to the implementation of
the BPF at the rate X Y�p�q , but a significant saving in processing time is possible if X Y�p�q�çéç & X{k Ù ¨�Ø9Ù .
While the processing time required by the BPF decreases as

# U�l Ô
, the time spent computing the outputs

of the decimation and interpolation filters increases with l and the overall processing time is therefore
minimal for some optimal value of l .
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[29] G. Dôme, The SPS accelerating system, travelling wave drift-tube structure for the CERN SPS,
CERN-SPS/ARF/77-11 (1977).

[30] E. Kikutani, J. Flanagan, M. Tobiyama, Limitations of multibunch feedback systems and extrapo-
lation, Proc. EPAC, Vienna, 2000.

[31] M. Tobiyama, E. Kikutani, T. Obina, Y. Minagawa, T. Kasuga, Initial test of a bunch feedback sys-
tem with a two-tap FIR filter board, Proc. 7th Beam Instrumentation Workshop (BIW96), Argonne
National Laboratory, IL, 1996 (KEK Preprint 96-22, 1996).

[32] Y. Minagawa, E. Kikutani, S. Kurokawa, M. Tobiyama, Study of a transverse bunch-by-bunch
feedback system based on the two tap FIR filter, Nucl. Instrum. Methods Phys. Res. 416 (1998).

[33] FIR Compiler MegaCore Function, version 1.12, ALTERA, http://www.altera.com .

[34] V. Rossi, CERN SL/HRF, private communication.

[35] J.M. Brennan, A. Campbell, J. DeLong, T. Hayes, E. Onillon, J. Rose, K. Vetter, RF beam control
system for the Brookhaven Relativistic Heavy Ion Collider RHIC, presented at EPAC, Stockholm,
1998.

[36] ADSP-21000 Family, Applications Handbook Vol. 1 (Analog Devices, 1995).

[37] A. Oppenheim, R. Schafer, Digital Signal Processing (Prentice-Hall, Englewood Cliffs, NJ, 1975).

[38] Texas Instruments, Technology Innovations Bulletin 8 March 2001,
http://www.ti.com/sc/techinnovations8 .

[39] N.J. Fliege, Multirate Digital Signal Processing (Wiley, Chichester, 1994).

209


