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Abstract
This is as an introduction to microwave techniques. It does not treat active
devices nor special materials used in microwave components, but it deals with
the fundamentals of transmission lines, microwave networks, and cavity res-
onators. It also introduces some basic measurements closely related to this
material.

1 MICROWAVE ENGINEERING

The term microwave refers to high-frequency signals with short wavelengths. Because of the short
wavelengths standard circuit theory can no longer be used, since the size of components is comparable
to the wavelength. Standard circuit theory is a special case of Maxwell’s theory, where the components
are small in relation to the wavelength. Microwave components are distributed elements, where the
fields vary significantly over the physical length of the device. In general, they have to be computed
by applying Maxwell’s equations and thus the mathematical complexity arises. Microwave engineering
tries to reduce the complexity and expresses solutions found by field theory in terms of circuit theory.

The foundations of electromagnetic theory were laid down in Maxwell’s theory [1] and proven
experimentally by Heinrich Hertz in the years 1887–1891. After a long period of development, the birth
of microwave engineering is often attributed to the time of World War II when the Radiation Laboratory
was established at MIT, USA, to develop radar theory and technique. Brilliant scientists, including
N. Marcuvitz, I.I. Rabi, J.S. Schwinger, H.A. Bethe, E.M. Purcell, C.G. Montgomery, and R.H. Dicke
gathered to develop the field of microwaves. Their work is summarized in the 28-volume Radiation
Laboratory Series of books [2].

Passive microwave components are transmission lines, filters, couplers, junctions, antennas, fer-
rite devices and others. Active devices include tubes and solid-state devices, and are used for sources,
detectors, amplifiers, mixers, and so on. This paper is an introduction to microwave engineering, treating
passive components.

2 TRANSMISSION LINES

Transmission-line theory normally refers to cylindrical (constant cross section) waveguides that support
TEM modes or quasi TEM modes, i.e. modes with no (or negligible) longitudinal field components. The
field patterns are equal or close to static field distributions and propagate with the velocity of light. These
are two-wire lines, coaxial lines, parallel-plate lines, striplines, co-planar striplines and so on. However,
much of what we learn in the following can be extended, under certain restrictions, to other waveguides
(TM, TE, and hybrid lines) and is therefore of general importance.

2.1 Transmission-line equations
The wave propagation on TEM lines can be calculated, in a formal way, from Maxwell’s equations. Here,
however, we will used a more intuitive approach and derive it from a short piece of line of length d � ,
which is modelled as a lumped-element circuit. As an example we choose a two-wire line.

The current in the wire causes a magnetic field around the axis of the wire and experiences a
resistance in transporting the electrons. Therefore, the equivalent circuit has a series inductance

���
d �

and a series resistance � � d � (the prime indicates a quantity per unit length), Fig. 1. Likewise, the voltage
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between the conductors includes surface charges on the conductors and a leakage current between the
conductors due to dielectric losses. These effects are represented by a shunt capitance � � d � and a shunt
conductance � � d � .

Fig. 1: Equivalent circuit of a piece of line of length d �
Applying Kirchhoff’s voltage law�
	 � � d ���	 � � d � � ���� 	��
	 � �� � d ����� (1)

and Kirchhoff’s current law ��	 � � d ���
	 � � d � � ���� 	��	 � �� � d ������� (2)

where we have neglected second-order terms, yields the time-domain form of the transmission-line equa-
tions � �� � ��	 � � ��	 � � � ���� � (3)� �� � ��	 � � ��	 � � � ������ (4)

The solution of Eqs. (3) and (4) plays an important role in the transmission of steps and impulses.
Here, we are interested in the sinusoidal steady-state condition with a time dependence exp  "!$# �&% , and
the equations simplify to � �� � �'	  (� �$) !*# � � % ��� (5)� �� � ��	  +� � ) !,#
� � % � � (6)

To solve Eqs. (5) and (6) we differentiate (5) and substitute (6):

d - �
d � - �/. - � (7)
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with the complex propagation constant.0�'1  (� � ) !,# � � %  +� � ) !,#
� � % �32 ) !�4 � (8)

The solution of Eq. (7) are travelling waves�5���768:9<;&=?>(@BADC ) � @8:9<;&=?> 6 ADC (9)

and �E� � 68F 8 9<;&=?> 6 ADC 	 � @8F 8 9<;&=?> 6 ADC � (10)

where we used Eq. (5) to find � , and
F 8 is the characteristic impedanceF 8 � � � ) !*# � �� � ) !*#
� � � (11)

The term
F 8 describes the ratio of the voltage and current amplitudes, either for the forward- or backward-

travelling wave.

The complex propagation constant (8) consists of the real part2G�IH JK  (� � � � 	 # - � � � � % ) JK:L  (��M - ) # - � M - %  +�NM - ) # - �OM - % � (12)

which is the attenuation constant, and the imaginary part4 � H 	 JK  (� � � � 	 # - � � � � % ) JKPL  (� M - ) # - � M - %  +� M - ) # - � M - % � (13)

which is the phase constant. As an example, the forward-travelling wave is shown in Fig. 2. It decays
with 2 along � and has a wavelength Q � KER�S 4 � (14)

The phase of each travelling wave is T � # �VU 4 �W� (15)

which after differentiation with respect to
�

determines the phase velocity:XZY\[]�_^ �^ � �3` #4 � (16)

2.2 Terminated lines
If one excites a wave at the input end of a semi-infinite line there will be only one wave travelling away
from the input. The second wave will not be excited (if it were, an infinitely strong source would have to
be present at the infinitely remote end of the line). The pattern of the wave is given in Fig. 2.

To treat lines of finite length a we express � , � in Eqs. (9) and (10) for instance, by their terminal
values (here and in the following we drop the time dependence)
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Fig. 2: Voltage of the forward-travelling wave along the line at a fixed time instant

�  (a % ���cbd��� 68 9e@BADf ) � @8 9gADf � (17)F 8 �  (a % � F 8 �hb��i�768�9 @BADf 	�� @8�9 ADf � (18)

yielding �j� JK  �cb ) F 8 �hb % 9gA$klf"@�C<m ) JK  �cbn	 F 8 �ob % 9$@BA$kpf"@�Cqm � (19)F 8 �E� JK  �7b ) F 8 �hb % 9 A$kpfr@�C<m 	 JK  �cb,	 F 8 �hb % 9 @BA$klf"@�C<m � (20)

First, let us consider a matched line where the terminating impedance
F b equals the line impedanceF 8 . Then, F bd� �7b�ob F 8 (21)

and the backward-travelling wave vanishes. Similar to the infinitely long line, there is only one forward-
travelling wave. At position �j� a , this wave is completely absorbed by the load impedance. The line
is matched. This is an important situation because an unwanted reflection of the wave is suppressed.
Furthermore, since

F 8 is essentially real the matched situation provides an optimal transfer of power to
the load.

In the general case of an arbitrary load impedance a part of the forward-travelling wave will be
reflected (Fig. 3).

At the end of the line � and � are connected by �VbW� F b��hb and we obtain for Eq. (19)�5� JK � b  J ) F 8 S F b % 9gA$klf"@�C<m ) JK � b  J 	 F 8 S F b % 9$@BA$kpfr@�C<m � (22)

i.e. the ratio of the backward to forward voltage wave at the end of the line issDbd� F b 	 F 8F b ) F 8 � (23)

This ratio is called the reflection coefficient. If the line is terminated by its impedance,  F bd� F 8 % , thensP�t� ; if it is short circuited  F bN�t� % , sP�u	 J ; and in the case of an open circuit  F bv�'w % , sP� ) J .
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Fig. 3: Line excited by an a.c. voltage and terminated with an arbitrary load

In the last two cases the wave is fully reflected with a cancellation of the voltage or the current for short
and open circuits, respectively.

In the case of an arbitrary termination, with the reflection coefficient Eq. (23), the voltage along
the line is made up by the two waves Eq. (22). They can be described by complex phasors:� 6  � % � � 6  (a % 9Dxykpf"@�Cqmz9q;&{zkpfr@�C<m � � 6  (a % � JK � b  J ) F 8 S F b % � (24)� @  � % � � @  (a % 9$@�xykpf"@�Cqm?9e@z;<{zkpf"@�Cqm � � @  (a % �|s�� 6  (a % � (25)

Going from the line end to the beginning, the phasor of the forward wave increases and rotates counter-
clockwise, while the phasor of the backward wave decreases and rotates clockwise. The projection onto
the real axis of the vector sum of both phasors is the real voltage.

2.3 Terminated lossless line
Typical transmission lines have small losses and for short lengths one can assume 2 a} J , then .�~ !*4
and the voltage and current waves can be written as�  � % �i� 6  (a %�� 9 ;<{zkpf"@�Cqm ) s 9 @z;<{?klf"@�C<m(� � � 6  (a % � �7bK  J ) F 8 S F b % � (26)F 8 �  � % �i� 6  (a % � 9 ;<{?klf"@�C<m 	�s 9 @z;<{?klf"@�C<m � � (27)

With the distance � from the line end, ��� a 	 � , and s���� s�� exp  "!$� % , the voltage magnitude is� �  � % �z�_�� � 6  (a % �� ��� J ) � s�� 9 ;Zkp��@ - {e�<m ��� � (28)

i.e. it oscillates between maximum values� �E�
max
� �� � 6  (a % �� � J ) � s��"� (29)

at positions
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� max
�  �� 	�� KER % SeK 4 � ������� J � K �"�"� (30)

and minimum values � �E�
min
�_�� � 6  (a % �� � J 	/� s��"� (31)

at positions � min
�  �� 	  K � ) J % R % SeK 4 � (32)

As � s�� increases, the ratio of � ��� max to � ��� min increases, so a measure of the mismatch of the line is the
standing wave ratio, defined as �,� � � � �E�

max� ���
min

� J ) � s��J 	i� s�� � (33)

The SWR is a real number between 1 and w , where 1 implies a matched line and w refers to an open or
shortened line. From Eqs. (29) to (32) it follows that the distance between subsequent maxima or minima
is
R�S 4 � Q SeK , while the distance between a maximum and a minimum is

R�SeK 4 � Q S�� .
While the voltage amplitude is oscillatory with position on the line, the time-average power flow

is constant. From Eqs. (26) and (27) follow���&� � JK Re � �  � % �o�  � %<� � JK F 8 �� � 6  (a % �� - Re � J 	�s�� 9<; - {zkpf"@�Cqm ) s 9e@z; - {?klf"@�C<m 	/� s�� -y�� � � 6  (a % � -K F 8 Re � J 	�� s�� - ) K ! Im � s 9$@z; - {zkpfr@�C<m�� �� JK F 8 �� � 6  (a % �� -0  J 	/� s�� -Z¡ � (34)

which shows that the average power flow is constant along the line and that the power delivered to the
load impedance is equal to the incident power � � 6  (a % � - SeK F 8 minus the reflected power � se� 6  (a % � - SeK F 8 .

As shown above, the voltage is oscillating on the line and the real power flow is constant. It
can therefore be concluded that the impedance seen looking into the line must vary with position. At a
distance � � J 	�� from the load the input impedance follows from Eqs. (26) and (27) and Eq. (23) asFE¢l£ � �  �� %�  �� %� F 8d¤g¥�¦  "!$4� % ) s ¤g¥�¦  	 !$4�� %¤g¥�¦  "!$4� % 	�s ¤g¥�¦  	 !$4�� %� F 8 F bv§g¨�© 4� ) ! F 8 ©&ªr« 4��! F b¬©<ªr« 4� ) F 8 §g¨�© 4��� F 8 F b ) ! F 8�&® « 4�F b ) F 8 &® « 4�� � (35)

This important result gives the input impedance of a length � of a transmission line with an arbitrary
terminating impedance.
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2.4 Impedance transformation
On a lossy line the voltage and current waves follow Eqs. (26) and (27) with !$4 replaced by . . Then, the
input impedance corresponding to Eq. (35) isF ¢l£ � F 8 F b ) F 8 &® «�¯�. �F 8 ) F b &® «�¯�. � � (36)

We write &® «�¯�. � � &® «�¯¬2 � ) ! &® « 4�J ) ! &® «�¯¬2 �O° &® « 4� � (37)F b S F 8 � &® «�¯  �± ) !,² % � (38)

and obtain for Eq. (36) F ¢l£F 8 � &® «�¯´³ ± ) 2 � ) !¬ �² ) 4�� %hµ � (39)

Six special cases are of interest:

1. The long lossy line, where 2 ��¶ J , then&® «�¯¬2 � ~ J � &® «�¯�. � ~ J (40)

and FE¢l£ ~ F 8 � (41)

The input impedance is independent of the terminating impedance and equals the line impedance.
2. A small mismatch with

F bd� F 8  J ) ± % , � ± � } J , thenFE¢l£F 8 � J ) ± S  J ) &® «�¯W. � %J ) ± &® «�¯W. � S  J ) &® «�¯�. � % ~ J ) ± J 	 &® «�¯W. �J ) &® «�¯W. � � J ) ± 9$@ - AD� � (42)

i.e. the smaller the mismatch ± and the larger the attenuation 2 � , is the better the input impedance
approximates the line impedance. The deviation depends on 4� , but is always smaller than� ± � ¤g¥�¦  	 K 2 � % . This is a good estimate for how strong a small mismatch appears at the input.

3. Line terminated in a short circuit,
F bd��� , thenFv·¢l£ � F 8�&® «�¯�. � (43)

4. Line terminated in an open circuit,
F b��¸w , thenFN·¢l£ � F 8 §g¨  ¯W. � � (44)

From Eqs. (43) and (44) follows F 8 � L F 8¢p£ F ·¢l£ (45)&® «�¯�. � � L F ·¢p£ S F 8¢l£ (46)

or
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9 - AD� �º¹ J ) L F ·¢l£ S F 8¢l£z» S ¹ J 	 L F ·¢l£ S F 8¢l£�» � (47)

and line impedance as well as propagation constant can be determined from measuring the input
impedance of the open and shorted line.

Particularly useful for impedance transformation are lossless lines (or short lines with small
losses). They transform impedances with no losses.

5. The

Q S��
-impedance inverter

A line of length � � Q S�� has 4�� � R�SeK and the input impedance (35) isF�¢l£ � F -8 S F b � (48)

A real load
F b�� � b can be transformed into any real impedance

Fn¢l£ � � ¢l£ by choosing
F 8 �¼ � b � ¢p£ . However, since 4 depends on # , the exact transformation is obtained only at the right

frequency. For a broad band transformation several cascaded

Q S��
inverters with different

F 8 are
used.

6. The

Q SeK
transformer

If the line has a length � � Q SeK , then 4� � R and the input impedance (48) equals the terminationF�¢l£ � F b � (49)

2.5 The Smith chart
The Smith chart was developed by P. Smith at the Bell Telephone Laboratories in 1939. It is a graphical
aid to solve transmission line problems.

We express the complex ratio of terminating impedance to line impedance byF bF 8 �3��� ± ) !�² (50)

and write the reflection coefficient (23) as a function of � :s]�isD½ ) ! s ; � ��	 J� ) J � (51)

Then, the Smith chart maps the complex � -plane into the polar plot of the voltage reflection coeffi-
cient, Fig. 4(a). We invert Eq. (51), ���ºJ ) sJ 	�s �
and split it into real and imaginary parts:± � J 	�s -½ 	�s -¢ J 	�s\½ % - ) s -¢ � ² � K s ¢ J 	�s\½ % - ) s -¢ �
The last two equations can be rearranged such that they represent two sets of circles in the s -plane:¹ s ½ 	 ±J ) ± » - ) s -¢ � J J ) ± % - � (52) s ½ 	 J % - ) ¹ s ¢ 	 J² » - � J² - � (53)
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Equation (52) defines resistance circles for ± = const. and Eq. (53) defines reactance circles for ² = const.
All resistance circles have centres on the horizontal s ¢ �t� axis, and pass through the point s:� J . The
centres of the reactance circles lie on the vertical s$½¬� J line, and the circles pass also through the points]� J .

Fig. 4: (a) Construction of a Smith chart; (b) Impedance transformation in the Smith chart

The Smith chart allows impedance transformations in a convenient way. Following the arguments
in Section 2.2 and defining the reflection coefficient at any position ���3¾?	 � as the ratio of backward to
forward voltage wave, we obtain from Eqs. (22) and (23)s  �� % � F b 	 F 8F b ) F 8 9e@ - AD� �is @ - x$�b 9e@z; - {¿� � (54)

Then, we find for the impedance at position �F�¢l£  �� % � �  �� %�  �� % � F 8 J ) s  �� %J 	�s  �� % (55)

or after inversion s  �� % � F�¢p£  �� % S F 8 	 JF�¢p£  �� % S F 8 ) J � (56)

The relations (55) and (56), together with the Smith chart (Fig. 4(b)), now allow the input impedance to
be determined when the terminating impedance � is given. We find � in the chart and read the corre-
sponding reflection coefficient s  � % . Corresponding to Eq. (55) we rotate s by 	 K 4� and demagnify it
by ¤g¥y¦  	 K 2 � % . The readings of the new point determine

F ¢l£  �� % S F 8 .
3 MICROWAVE NETWORKS

Microwave networks consist of different elements connected by lines. An element may have several
‘ports’ (connections with lines), Fig. 5. At each port we use the voltages and currents we have defined
previously. The relations between the port quantities define the element.
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Fig. 5: An À -port microwave network

3.1 Impedance and admittance matrices
Let us consider an Á -port network as shown in Fig. 5. At the � th port, in a well-defined terminal plane� £

, the voltage and current are given by� £ �i� 6£ ) � @£ � � £ �i� 6£ 	�� @£ � (57)

The terminal plane
� £

is important in providing a phase reference for the voltage and current phasors.
Then, assuming linear networks, the relation between the voltages and currents at the different parts can
be expressed by the impedance matrix

Â �ÄÃPÅ� ÃÆ�ÈÇÉÉÉÉÊ
FdËÌË F�Ë - �"�"� F�ËoÍF - Ë F -Ì- �"�"� ...

...
...F ÍÎË F Í - �"�"� F ÍdÍ
ÏpÐÐÐÐÑ � Â � ÇÉÉÉÊ �

Ë� -...� Í
ÏpÐÐÐÑ � ÅÎ� ÇÉÉÉÊ �

Ë� -...� Í
ÏpÐÐÐÑ � (58)

or admittance bmatrix ÅÎ�iÒ Â � ÒÓ�ÄÃ @ÕÔ � (59)

The elements of, for instance, the impedance matrix can be found asFE¢ ; � � ¢� ; � if �oÖ���� for ×�Ø� ! � (60)

that is by driving port ! with � ; , while all other ports are open, and measuring the open-circuit voltage at
port � . Thus,

F�¢l¢
is the input impedance of port � when all other ports are open-circuited, and

FW¢l¢
is the

transfer impedance between ports � and ! when all other ports are open-circuited.

In general, each
F*¢l¢

and Ù ¢l¢ may be complex, and an N-port network will have
K Á - independent

quantities. In practice, however, many networks are reciprocal or lossless, or both. If the network is
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reciprocal the impedance and admittance matrices are symmetric. If the network is lossless, the elementsFE¢l¢
, Ù ¢p¢ are purely imaginary.

A network is reciprocal if it does not contain active devices or non-reciprocal material such as
ferrites or plasmas. Reciprocity is a consequence of Maxwell’s equations (Lorentz reciprocity theorem)
and can be shown easily [3]. Here, we will only state the consequences. Let us shorten all ports but the
first and second. Then, a current � � Ë applied to port 1 will create a voltage � � - at port 2. Conversely, a
current � � �- at port 2 will create a voltage � � �Ë at port 1. Reciprocity means that the transfer impedances are
equal, � � -� � Ë � � � �Ë� � �- � Ú¿s F - Ë � F�Ë - �
and since this is valid for any two ports the impedance matrix Z is symmetric. Its inverse, the admittance
matrix Y is also symmetric.

In lossless networks the averaged real power delivered to the network must be zero. We start with
all ports but the � th open and obtain���&� � JK Re � � ¢ � �¢ � � JK Re � F�¢p¢ � � � Ë � - �3�
or Re � F�¢l¢ � ��� . Next, we drive the � th and ! th port with � ¢ and � ; ,� �&� �ÓJK Re � � ¢ � �¢ ) � ; � �; � �ÓJK Re � F ¢l¢ � � -¢ � ) F ;Û; � � ; � - ) F ¢ ; � ; � �¢ ) F ; ¢ � ¢ � �; �� JK Re � F ¢ ; � ; �o�¢ ) F ; ¢ � ¢ �o�; � � JK Re � F ¢ ;  � ¢ �o�; ) �o�¢ � ; %<� �����
and since � ¢ � �; ) � �¢ � ; is real it follows that Re � F ¢ ; �Ü� � . Here, we have used

F ¢ ; � F ; ¢ . That means
the elements of the impedance and admittance matrix are purely imaginary for lossless and reciprocal
networks.

Often, in practice, the network is a symmetric 2-port network and the impedance matrix reduces
to ÃÆ�ÞÝ FdËÌËßFdË -F - Ë F -Ì-qà � (61)

One possible equivalent network is the T-junction shown in Fig. 6(a). The elements are easily found by
applying open circuits: F�ËÌË � � Ë� Ë ��� ¢ráãâ 8 � F*� ) F*ä �F -Ì- � � -� - ��� ¢�åhâ 8 � F*æ ) F�ä � (62)F�Ë - � � Ë� - ��� ¢ å â 8 � F*ä �
The equivalent network for the admittance matrix is normally a

R
network, Fig. 6(b). The elements can

be found by short circuits:
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Fig. 6: (a) Equivalent T network with a symmetric impedance matrix; (b) Equivalent ç network for a symmetric admittance

matrix

Ù ËÌË � � Ë� Ë ��� è áãâ 8 � Ù � ) Ù ä �Ù -Ì- � � -� - ��� è å â 8 � Ù æ ) Ù ä � (63)Ù Ë - � � Ë� - ��� è å â 8 ��	 Ù ä �
3.2 Scattering matrix
The description of microwave networks by voltages and currents is not always the best choice. This has
to do with problems of measuring voltages and currents at high frequencies but also with difficulties in
defining voltages and currents for non-TEM lines (waveguides). Therefore, the description of networks
by impedance and admittance matrices becomes somewhat an abstraction. A representation more in
accordance with direct measurements is given by the scattering matrix S. The scattering matrix also
provides a complete description of the network as seen at its Á ports. It relates the incoming waves to
the reflected waves.

Consider the Á -port of Fig. 5, where � 6n and � @n are the amplitudes of the incoming and reflected
waves, respectively. Referring to Eqs. (9) and (10) and choosing the port plane

�
n as a reference plane we

can normalize the amplitudes of the voltage and current waves,é £ �i� 6£ S 1 F 8 � ê £ �i� @£ S 1 F 8 � (64)

such that the averaged real power delivered into port � is��<� � JK Re � � £ � �£ � � JK Re � 1 F 8  é £ ) ê £ % JF 8  é �£ 	´ê �£ %<�� JK R 9 � � é £ � - 	/� ê £ � - ) ê £ é��£ 	�é £ êg�£ � � JK   � é £ � - 	i� ê £ � - ¡ � (65)

i.e. the incoming power is given by � é £ � - SeK and the reflected power by � ê £ � - SeK .
The relation between the wave amplitudes é ¢ , ê ¢ is given by a system of Á linear equations
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ë �tì�í]� ì0� ÇÉÉÉÊ
� ËÌË � Ë - �"�"� � ËoÍ� - Ë � -Ì- �"�"� � - Í...

� ÍÎË � Í - �"�"� � ÍdÍ
ÏpÐÐÐÑ � í
� ÇÉÉÉÊ é

Ëé -...é Í
ÏpÐÐÐÑ � ë � ÇÉÉÉÊ ê

Ëê -...ê Í
ÏpÐÐÐÑ � (66)

and the system matrix is the scattering matrix. The elements are found by� ¢ ; � ê ¢é ; � �oî ézÖO��� îïÚ�s ×GØ� ! � (67)

That is,

� ¢l¢
is the reflection coefficient at port � when all other ports are matched, and

� ¢ ; is the transmis-
sion coefficient for a wave coming in at port ! and going out at port � when all ports are matched.

For networks satisfying reciprocity, the scattering matrix is symmetric, as are the impedance and
admittance matrices.

If the network is loss-free, then the real power coming out of the ports must equal the real power
delivered to the ports JK ë > ë �W� JK í > í���
which we write as  ìOí % >  ìOí % � ��í > ì > � � é � ��í > é � ��í > J é � �
Thus ì > ì � � J �
and the transpose is the conjugate of the inverse matrixì > �  ì @ Ë % � � (68)

which is called a unitary matrix. We can write these relations as sums,ÍðÖ âË � Ö ¢ � �Ö ¢ � J � (69)ÍðÖ âË � Ö ¢ � �Ö ; ����� � Ø� ! � �&� ! � J � K � �"�"� Á � (70)

stating that the columns of the scattering matrix are orthonormal.

Equations (69) and (70) reduce the number of independent quantities but they also impose restric-
tions on what can or cannot be done with loss-free junctions. Consider for instance the loss-free power
divider or power combiner of Fig. 7. If sources are introduced at ports 1 and 2 with the combined power
obtained at 3, one might wish to have

� Ë - � � - Ë ��� in order to eliminate direct interaction between the
sources. But Eq. (70) with ��� J , ! � K gives� ËÌË � �Ë - ) � - Ë � �-Ì- ) �ïñ Ë � �ñ - �3���
requiring either

� ñ Ë
or

� ñ - to be equal to zero and thus eliminating one of the two desired couplings.
The junction will act as a power combiner, but the sources will interact, and if they are not identical in
magnitude and phase, one source will feed power to the other.
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Fig. 7: A ò -junction power combiner

In dealing with cascaded circuits, the scattering formalism is not convenient. For that purpose we
restrict ourselves to 2-port circuits and rearrange the scattering matrix such that the amplitudes é - , ê - are
the independent and ê Ë , é Ë the dependent variables:Ý ê Ëé Ë à � Ýôó ËÌË ó Ë -ó - Ë ó -Ì- à Ý é -ê - à�õ (71)

with ó ËÌË � � Ë - 	 � ËÌË � -Ì- S � - Ë � ó Ë - � � ËÌË S � - Ë � ó - Ë �'	 � -Ì- S � - Ë � ó -Ì- � J S � - Ë �
Now, the output wave ê - of a first circuit is the input wave é � Ë of a subsequent circuit, and the input é - is
the output ê � Ë , see Fig. 8. Simple multiplication of the transfer matrices gives the overall matrixÝ ê Ëé Ë à � ó Ý é -ê - à � Ý ê � Ëé � Ë à � ó � Ý é � -ê � - à õ
and since Ý é -ê - à � Ý ê � Ëé � Ë à �Ý ê Ëé Ë à � ó0ó � Ý é � -ê � - à � (72)

Fig. 8: Cascade connection of two 2-port networks
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3.3 Some common microwave elements
T-junction power dividers, Fig. 9, are simple 3-port networks that can be used for power division or
combining. As mentioned above, such a network cannot be lossless, reciprocal and matched at all ports.
If it is lossless and reciprocal the scattering matrix must be symmetric and Eqs. (69) and (70) hold. In
case of the H-plane T, for instance, we can further assume that the waves going out from the ports 1 and
2 are symmetric if port 3 is driven, i.e.

� Ë ñ � � - ñ , and that port 3 is matched,

� ñÌñ �¸� . Then Eqs. (69)
and (70) reduce to � � ËÌË � - ) � � Ë - � - ) � � Ë ñ � - � J �� � Ë - � - ) � � -Ì- � - ) � � Ë ñ � - � J �K � � Ë ñ � - � J �� ËÌË � �Ë -nö � Ë - � �-Ì- ) � � Ë ñ � - �3���� ËÌË � �Ë ñ ö � Ë - � �Ë ñ ������ Ë - � �Ë ñ ö � -Ì- � �Ë ñ �����
which gives � ËÌË � � -Ì- ��	 � Ë - � � � Ë ñ ��� J S ¼ K � � � ËÌË �$� J SeK
and, after choosing the reference planes such that the elements are real,ìV÷/�ÓJK ÇÊ J 	 J ¼ K	 J J ¼ K¼ K ¼ K � ÏÑ � (73)

Fig. 9: Various T-junction dividers: (a) E-plane waveguide; (b) H-plane waveguide; (c) Microstrip

If the 3-port network is non-reciprocal,

� ¢ ; Ø� � ; ¢ , then the condition of input matching at all ports,

� ¢l¢ ��� , can be satisfied. We further assume a lossfree device and Eqs. (69) and (70) become

79



� � - Ë � - ) � � ñ Ë � - � J � � ñ Ë � �ñ - ��� õ� � Ë - � - ) � � ñ - � - � J � � - Ë � �- ñ ��� õ� � Ë ñ � - ) � � - ñ � - � J � � Ë - � �Ë ñ ��� �
The equations can be satisfied in one of two ways� Ë - � � - ñ � � ñ Ë ����� � � - Ë ���I� � Ë ñ �$�I� � ñ - �$� J
or � - Ë � � Ë ñ � �ïñ - ����� � �ïñ Ë ���I� � Ë - �?�I� � - ñ �$� J �
The result is that

� ¢ ; Ø� � ; ¢ for � Ø� ! , i.e. the device is non-reciprocal. The two solutions are shown
in Figs. 10(a) and (b). The first solution is a device where the power coming in at port 1 exits at port 2,
and power coming in at port 2 will exit at 3 and so on. Such a device is called a circulator and allows the
separation of a source at port � from reflections coming from a load at port � ) J . In the second solution the
direction of power flow is changed. Circulators employ generally anisotropic materials, such as ferrites,
and can be realized in very different ways. Two solutions are shown in Figs. 10(c) and (d).

(c) (d)

Fig. 10: Different circulators. (a) Clockwise circulation; (b) counter-clockwise circulation; (c) waveguide circulator; (d)

stripline circulator.

Two examples of 4-port networks are directional couplers and hybrids, see Fig. 11. We assume a
reciprocal loss-free network with all four ports matched,

� ¢l¢ �t� . We further assume isolation between
the ports 1–4 and 2–3,

� Ë+ø � � - ñ ��� . Then, the scattering matrix reduces to

ì0� ÇÉÉÊ �
� Ë - � Ë ñ �� Ë - � � � - ø� Ë ñ � � � ñ ø� � - ø � ñ ø �

ÏpÐÐÑ (74)
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with four unknowns. Equations (69) and (70) yield for ��� !� � Ë - � - ) � � Ë ñ � - � J ��� � Ë - � - ) � � - ø � - � J ��� � Ë ñ � - ) � � ñ ø � - � J ��� � - ø � - ) � � ñ ø � - � J � (75)

implying � � Ë ñ ���ù� � - ø � and � � Ë ñ ���ú� � - ø � . Furthermore, we select the terminal plane
� - with respect to� Ë

so that

� Ë - is real and positive, and similarly 4 with respect to 3 so that

� ñ ø
is real and positive, i.e.� Ë - � � ñ ø �32 �

From Eqs. (69) and (70) with � Ø� ! remains� Ë - � �- ø ) � Ë ñ � �ñ ø ������ Ë - � �Ë ñ ) � - ø � �ñ ø �����
requiring

� Ë ñ �'	 � �- ø . � Ë ñ and

� - ø can only differ in phase, therefore� Ë ñ � 4 9 ;üû � � - ø � 4 9 ;<�
and the relation between phases is ý ) � � R ) K � R �
Ignoring integer multiples of

KeR
, there are two choices:þ symmetrical coupler,

ý � � � R�SeK ,þ antisymmetrical coupler,

ý �3� , � � R .

The related scattering matrices are

ì · � ÇÉÉÊ � 2 !�4 �2 � � !*4!*4 � � 2� !*4 2 �
ÏpÐÐÑ � ì � · � ÇÉÉÊ � 2 4 �2 � � 	 44 � � 2� 	 4 2 �

ÏpÐÐÑ � (76)

Note that the two couplers differ only in the choice of reference planes. Also, the constants 2 , 4 are not
independent because of Eq. (75), 2 - ) 4 - � J õ
therefore, an ideal directional coupler has only one degree of freedom. The coupling mechanism is either
hole coupling, Fig. 11, where the strength is adjusted by the number and the size of the holes, or coupled
transmission lines, where the distance between lines determines the strength.

Hybrid couplers are special cases of directional couplers, where the coupling factor is 3 dB, i.e.2�� 4 � J S ¼ K . There are two types of hybrid:þ Quadrature hybrid with 90 ÿ phase shift between ports 2 and 3 when fed at port 1. It is a symmetrical
coupler, see Fig. 12.þ Magic-T or rat-race hybrid with 180 ÿ phase difference between ports 2 and 3 when fed at port 4.
It is an antisymmetrical coupler, see Fig. 12.
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Fig. 11: Hole-coupled directional coupler

Directional couplers are usually characterized by three quantities:

coupling � � J �P¾"¨�� � Ë S � ñ ��	 K �P¾r¨�� 4 ^ � �
directivity � � J �P¾"¨�� � ñ S �ø � K �P¾"¨�� 4� � Ë+ø � ^ � � (77)

isolation � � J �P¾"¨�� �nË S �ø ��	 K �P¾r¨�� � � Ë+ø � ^ � �� indicates the fraction of the input power which is coupled to the output. � is a measure of the coupler’s
ability to isolate forward and backward waves, as is � . These quantities are related as follows:� � � ) � �
An ideal coupler [Eq. (76)] has infinite directivity and isolation.

4 CAVITY RESONATORS

Cavity resonators have an infinite number of oscillatory modes. Each mode is characterized by its res-
onant frequency, the stored electromagnetic energy and the losses dissipated in the walls and eventually
also radiated into external circuits. Near resonance, a mode can be modelled by an equivalent lumped-
element resonant circuit.

4.1 Lumped-element resonant circuits
Lumped-element resonant circuits can be series or parallel circuits (Fig. 13).

Series circuit
The input impedance is F�¢l£ � � ) !,# � ) J!*#
� (78)

and the complex power delivered to the circuit is�¢l£ � JK �¬� � � JK FE¢l£ � �<� �]� JK � �&� ��¹ � ) !*# � ) J!,#
� »� � f�� ·Û· ) K !*#� � 	 	 � b % � (79)
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Fig. 12: Top: 90 
 branch-line coupler; bottom left: 180 
 ring or rat-race hybrid; bottom right: Magic-T
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Fig. 13: Left: Series RLC resonator and its response; right: parallel RLC resonator and its response

where � f�� ·o· �ÓJK � � �ü� - (80)

is the power dissipated in the resistor, and� 	 � J� � � �ü� - � � b�� J� J# - � � �g� - (81)

are the average magnetic energy stored in the inductor and the average electric energy stored in the
capacitor, respectively. At the resonance frequency# 8 � J¼ � �
the stored electric and magnetic energies are equal,

� bd� � 	 , and the input impedance is
F,¢l£ � � .

A figure of merit of the losses in the circuit is the quality factor� 8 � # 8 � b ) � 	� f�� ·Û· � # 8 �� � J# 8 �]� (82)

which shows that
� 8 increases if � decreases.

Close to resonance # � # 8 )� # , the input impedance (78) can be written asF�¢p£ � � ) !,# � Ý J 	 J# - � � à � � ) !*# � # - 	 # -8# -~ � ) ! K �  # � � ) ! K � � 8  ## 8 � (83)

From Eq. (83) we find the bandwidth B of the resonator. If � F�¢l£ � - � K � - the real power delivered
to the circuit (79) is one half of that delivered at resonance. The corresponding

 # S # 8 defines the
half-bandwidth:
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���� � ) ! K � � 8  ## 8 ���� - � � - � J ) � � -8 ¹  ## 8 » -�� � K � - �K  # S # 8 � � � J S � 8 � (84)

Alternatively to Eq. (83), a resonator with losses can be treated as a lossless resonator whose resonance
frequency # 8 has been replaced by a complex resonant frequency:# 8�� # 8 ¹ J ) !K � 8 » � (85)

The input impedance of a lossless resonator becomes, after substitution of Eq. (85),F�¢l£ � ! K �  �# 	 # 8 % � ! K � ¹ # 	 # 8 	 ! # 8K � 8 »� # 8 �� 8 ) ! K �  �# 	 # 8 % � � ) ! K �  # �
which is identical to Eq. (83).

Parallel circuit
For a parallel circuit the input impedance isF�¢p£ � ¹ J� ) J!�# � ) !*#
� » @ Ë � (86)� ¢p£ �ÓJK �v� � �ÓJK � ��� - S F �¢l£ �ÓJK � �E� - ¹ J� 	 J!$# � 	 !*#
� » � (87)� f�� ·Û· �ºJK � �E� - S � (88)� b �ÓJ� � � �E� - � � 	 �ÓJ� J# - � � �E� - � (89)� 8 � # 8 � b ) � 	� f�� ·Û· � �# 8 � � # 8 �´� � (90)

near resonance, # � # 8 )� # , the input impedance is given byFE¢l£ ~ ¹ J� ) J!,# 8 � ¹ J 	  ## 8 » ) !*# 8 � ) !  #
� » @ Ë~ ¹ J� ) !  # ¹ J# 8 � ) � »Î» @ Ë �º¹ J� ) ! K �  # » @ Ë~ �J ) ! K � 8  # S # 8 � (91)� � J S � 8 � (92)
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Loaded
�

The above-defined quality factor is characteristic of the circuit itself, i.e. in the absence of any loading
effects, and is called unloaded

�
. In practice, however, a circuit is inevitably connected to other circuits

which will cause additional losses, thus lowering the overall, loaded
� f . For a series circuit the external

load resistor � f adds in series with � , and from (82) followsJ� f � # 8 �  (� ) � f % � J� 8 ) J� b�� > (93)

with
� b�� > � J S # 8 � f � .

For a parallel circuit the load resistor is parallel to � and one obtains from Eq. (90)J� f � J# 8�� ¹ J� ) J� f » � J� 8 ) J� b�� > � (94)

with
� b�� > � # 8 � f � .

4.2 Time response of resonators
In a free-running resonator the dissipated power must equal the rate of change of the stored energy:� f�� ·o· ��	 d

d
�  � b ) � 	 % ��	 d

�
d
� �

which becomes, with the definition of
�

in Eq. (82) or (90),

d

�
d
� ��	 # 8� � � (95)

Thus, the energy decays exponentially �  �Ì% � � 8 9$@ - >������ � (96)

where ó�� � K � S # 8 (97)

is the filling time. Since

�! � - or � - , the voltage or current in the circuit decays exactly with ó"� .
As an example, let us consider the parallel circuit in Fig. 13. The source may be an ideal current

source, with infinite internal resistance, and delivers a short (compared to the resonance wavelength)
pulse of total charge # �%$�� ^ � . The pulse charges up the capacitor instantaneously (with no current
through the inductance) to a voltage � 8 � # S � and a stored energy

� 8 � # - SeK � . Now, the resonator
starts ringing with its resonance frequency # 8 � J S ¼ � � and the envelope of the voltage decays withó&� , Eq. (97).

The other extreme is driving the resonator in steady state with a current ���t� 8 ¤g¥�¦  "!n# �Ì% . Then,
away from resonance, e.g. #Æ}Þ# 8 , the input impedance (86) is
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FE¢l£ � � ¹ J 	 ! �# � ) !*#P�´� » @ Ë� � ¹ J 	 ! � 8 # 8# ) ! � 8 ## 8 » @ Ë~ � S  J 	 ! � 8 # 8 S # %~ ! �� 8 ## 8(')' !n� � (98)

and the voltage is small and inductive. Near resonance, the impedance is given by Eq. (91) and the
voltage is �j� � � 8J ) ! K � 8  # S # 8 9 ;&=?> � (99)

i.e. it is � � 8 at resonance and decays fast off-resonance (for large-
�

circuits). At # 8 it changes from a
positive to a negative phase. The full behaviour is shown in Fig. 14.

Fig. 14: Magnitude and phase of the voltage across a parallel resonance circuit

Equation (99) shows a phase difference
 ý

between the driving current and the resonator voltage
of &® «  ý ��	 K � 8  ## 8 � (100)

This phase difference is zero at resonance and
U �+* ÿ for

 # � ` � SeK .
As a last example we consider the switching on of a harmonic current with frequency # 8 :�  �Ì% �-, � îïÚ¿s �/. �� 8 ©&ªr« # 8 � îïÚ¿s �/0 � � (101)

The differential equation of the circuit is�  �&% � J� �  �Ì% ) J�21 �  �Ì% d
� ) � d �  �Ì%

d
� � (102)

We apply the Laplace transform and obtain

87



J� # 83 - ) # -8 � 8 � Kó&�54  3 % ) # -8 J3 4  3 % ) 3 4  3 %
or, after solving for 4  3 % , 4  3 % � 33 - ) # -8 ° J3 - ) K 3 S ó&� ) # -8 ° # 8� � 8 �
After decomposing the right side into partial fractions,

4  3 % � Ý # 83 - ) # -8 	 # 83 - ) K 3 S ó&� ) # -8 à � � 8 �
the inverse Laplace transform gives�  �Ì% �6,�©<ªr« # 8 � 	 ¤g¥�¦  	 � S ó&� %1 J 	 J S�� � -8 ©&ªr«0¹ # 8 L J 	 J S�� � -8 � »87 � � 8 �
which for high

�
-values can be written as�  �&% ~ , � J 	 9e@�>������e� ©<ªr« # 8 � ) �� ó�� 9e@�>������ §g¨�© # 8 � 7 � � 8 � (103)

In deriving Eq. (103) we put §g¨�©  � S�� ó9� % ~ J and ©&ªr«  � S�� ó&� % ~ � S�� ó�� , since these terms will vanish
owing to the exponential for large values of

� S ó:� .
As can be seen from Eq. (103) the resulting voltage consists of a transient part, which decays

exponentially, and the steady-state part, given by Eq. (99) for
 # ��� .

4.3 Transmission-line resonator
The most simple microwave resonator is one made of a transmission line. It is also an arrangement which
allows for the study of the filling of a resonator with microwave energy in a very intuitive way.

Fig. 15: (a) Shorted transmission line with iris; (b) equivalent circuit of a thin lossless iris parallel to electric fields

Let us consider a shorted transmission line with an iris a distance a away from the short, see Fig. 15(a).
If the mode on the line is such that the electric fields are parallel to the iris, the iris will concentrate the
electric fields and electric energy will be stored around the iris. Then, if we assume negligible losses
and a thin iris, the iris can be represented as a lumped capacitance, Fig. 15(b). The value of

�
has to be
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computed with field theoretical means and will not be derived here. The interested reader will find it in
Vol. 10 of Ref. [2]. Such an iris in an infinitely long transmission line causes a reflection, Eq. (23), ofs]� F b 	 F 8F b ) F 8 � Ù 8 	 Ù bÙ 8 ) Ù b � 	 ! �K Ù 8 ) ! � (104)

and has a transmission (see also Vol. 10 of Ref. [2]) of� � J ) s � (105)

Now, we turn on the RF and launch a wave down the line, toward the structure formed by the iris
and the short, as seen in Fig. 16. For a small iris opening one expects that most of the wave will be
reflected. Some will be transmitted through the iris. The transmitted part travels to the short, is reflected,
returns to the iris, where it radiates a little bit through, but most of it is reflected. With time, and if the
phases are right, the fields build up in the resonator. In steady state the incoming reflected wave interferes
destructively with the radiation from the cavity, and if the coupling of the iris and the dissipation in the
cavity are in a ‘matched’ condition the reflection disappears.

Fig. 16: Illustration of the filling of the cavity of Fig. 15

The process can be calculated in a step-by-step approach. The incident wave with complex ampli-
tude é is reflected by the iris with value s$é , while a fraction

� é is transmitted. This wave travels to the
short in a time ; � a S X�< , where X=< is the group velocity in the unloaded line, is reflected with s · �u	 J
and returns to the iris, where it is reflected and partially transmitted, and so on. Mathematically we find
for the wave on the right side of the iris and travelling to the righté 6 � � é�	�s 9e@ - ADf � é ) � s 9$@ - ADf � - � é�	 � s 9e@ - ADf �

ñ � é�` �"�"� � � éJ ) s 9 @ - ADf � (106)
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Similarly, we find for the wave on the left side of the iris and travelling to the lefté @ � sEé�	 9e@ - ADf � - é ) s 9e@ ø ADf � - é�	�s - 9$@?>ÛADf � - é�` �"�"�� sEé�	 9 @ - ADf Ý J 	�s 9 @ - ADf ) � s 9 @ - ADf � - U �"�"� à � - é� Ý sN	 � - 9 @ - ADfJ ) s 9 @ - ADf à é:� s )  s - 	 � - % 9 @ - ADfJ ) s 9 @ - ADf é � (107)

Making use of Eq. (105) the condition for zero reflection in steady state iss]� 9 @ - ADfJ 	 K 9 @ - ADf � (108)

which, substituted into Eq. (106), yieldsé 6 � J ) sJ ) s 9 @ - ADf é:� éJ 	 9 @ - ADf � (109)

The admissible parameter space which satisfies Eqs. (108) and (109) and the requirement � s�� ' J can be
shown graphically (Fig. 17). For given losses

K 2 a the dashed segment indicates the area where � s�� would
be larger than one. Any

K 4�a larger than  K 4�a % ä is allowed. The inverse of the magnitude of the phasor @A
gives then the build-up factor � é 6 S éï� in the resonator.

Fig. 17: Graphical solution of Eqs. (108) and (109). Any BDCFEHGJI�BDCFELKNM is admissible; admissible parameter GOI�BPCHEQKRM�SUTWVX T Y å
gives the field build-up in the resonator.
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4.4 Cavity-resonator parameters
Cavity resonators for acceleration are basically characterized by four parameters:þ The resonant frequency # 8 .þ The

�
-value.þ The � upon

�
, which is a measure for providing an accelerating voltage Z 8 with a certain stored

energy

�
: �� � Z -8# 8 � � (110)þ The shunt impedance � , which measures the efficiency to create an accelerating voltage Z 8 with

a certain dissipated power
�"[

: � � Z -8�9[ � (111)

Note that sometimes the definition � � Z -8 SeK �\[ is used, where the factor 2 is inserted for similarity with
a peak a.c. voltage Z 8 at a resistor � .

The accelerating voltage is given by the integration of the accelerating field over a typical length
�

:Z 8 � 1^]8!_  ��� �  � %Ì% d �W� (112)

where
�  � % is the time at which a particle is at location � , i.e.

�  � % � $ d � S=`  � % ) � 8 and
� 8 has to be

chosen such that Z 8 becomes maximum.

To illustrate Eq. (112) we take the example of a closed cylindrical cavity of length a which is
driven in the TM 8 Ë 8 mode, Fig. 18. The electric field is parallel to the cavity axis and is independent
of � : b � _ 8 §g¨�© # 8 �Hced �
Then, the accelerating voltage for a particle with constant speed

`
is given by

Z 8 � max>Wf , _ 8 1 <8 §g¨�©¿³ # 8  � S=` ) � 8 %hµ d � 7� _ 8 max> f , `# 8 ³ ©&ª « # 8  ga S=` ) � 8 % 	�©<ªr« # 8 � 8 µ 7 �
which is maximum for # 8 � 8 �'	 # 8 a SeK�` and has the valueZ 8 � _ 8 a ó � ó �3©&ªr« � # 8 aK�` � S � # 8 aK�` � � (113)ó is the transit time factor and takes into account the change of _ with time while the particle traverses
the cavity gap.

Often, instead of a single accelerating gap, there is a chain of cavities each of length
�

. Then, the
parameters (110) and (111) are given per unit length:
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� � � _ -8� �[ �_ 8 � Z 8 S � � (� S � % � � _ -8# 8 � � � (114)

The shunt impedance is a key parameter because it determines the accelerating voltage available from a
given input power

� ¢l£ � �9[ , if the cavity is not loaded by a beam. The � upon
�

, on the other hand, is
independent of the material losses and depends only on the cavity mode and geometry. It measures how
much stored energy is required for the wanted accelerating voltage.

One mode in a cavity resonator can be modelled by an equivalent circuit, as in Fig. 13. In the
case of the parallel circuit, for instance, the gap voltage Z 8 would be across the capacitor and the circuit
parameters follow from the cavity parameters as� ä�¢ ½ ä è ¢ > � JK � �� ä�¢ ½ ä è ¢ > � K# 8 � S � � (115)�,ä�¢ ½ ä è ¢ > � JK # 8 �� �

Finally, let us calculate the cavity parameters for a simple example, namely for the TM 8 Ë 8 mode
in a closed cylindrical cavity, Fig. 18. This is a good approximation for a cavity with small beam pipes
and is the most standard configuration.

Fig. 18: TM f å f mode in a pill-box cavity

The field components are
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_ C � _ 8\h?8  "! 8 Ëji S é % �F 8�k û � ! h Ë  "! 8 Ëji S é % � (116)F 8 � 1 l 8 S�m 8 �
where é is the cavity radius and ! 8 Ë is the first zero of the zero-order Bessel function.

The stored energy in the cavity is� � � 	 �Pn ) � b f � K � b f � K m 8� 1 �8 1 -po8 1 < � -@ < � - _ -8 h -8  "! 8 Ë i é % i d
i

d

ý
d �� m 8K KeR a é - _ -8 1 Ë8 ± h -8  "! 8 Ë ± % d ±� R K m 8 _ -8 a é - h -Ë  "! 8 Ë % � (117)

The losses are calculated by means of the power-loss method, that is from the wall currents of the ideal
conducting cavity:�\[ � JK�qsr , K 1 �8 � k û  ����� % � - KeR i d

i ) 1 < � -@ < � - � k û  i ��é % � - KeR é d � 7� Rqsr m 8l 8 _ -8 , K é - 1 Ë8 h -Ë  "! 8 Ë ± % ± d ± ) é a h -Ë  "! 8 Ë % 7� Rqsr ¹ _ 8F 8 » - é  é ) a % h -Ë  "! 8 Ë % � (118)

where
r � K  �# l 8 q % Ë � - is the skin depth.

The cavity voltage is given in Eq. (113). Then, shunt impedance,
�

-value and frequency become

� � Z -�\[ � JR qtr F -8  ga S é % -J ) a S é ©&ª « ×ea SeK×ea SeK Jh -Ë  "! 8 Ë %× � # 8 S �g8 � (119)� 8 � #"u�9[ � Jr aJ ) a S é �î � ! 8 ËKeR �é �
For a 3 GHz copper cavity with a gap of half a wavelength the values are:! 8 Ë � K � � � * , h Ë  "! 8 Ë % ��� � * Jwv�J q � *�xzy J � >9{N@ Ë m @ Ë ,é:�}| � x$K�x cm, a � *

cm,
r � J � K �+~ l m ,ó � ©&ªr« ×ea SeK×ea SeK � KR transit time factor �

� � � � S a � J �$� M { S m � � 8 � J ~ v�� |y� � � S � 8 � � � J k { S m � ó 8 � K � 8# � J � v l © �
93



4.5 Cavity shape perturbation
Inserting small metallic objects into a cavity or slightly deforming the shape of the cavity can be treated
by the perturbation technique [4], [5].

Let us designate the fields and the resonant frequency of the unperturbed cavity by E 8 , H 8 , # 8 and
of the perturbed cavity by E, H, # ; then Maxwell’s equations are� y b�� � 	 !�# 8 l)� � � � y � � � !*# 8 m b�� � (120)� y b � 	 !�# l)� � � y � � !�# m b � (121)

Manipulating Eqs. (120) and (121) we find� °z � y b �� % 	 b �� °? � y � % � � °? b �� y � % � !*# 8 l)� ° � �� 	 !,# m b �� ° b �� �� °? � y b % 	 b °z � y � �� % � � °z b y � �� % ��	 !*# l)� �� ° � ) !,# 8 m b ° b �� �
and after adding both equations and integration over the volume Z of the perturbed cavity

1�� � °z b y � �� ) b �� y � % ^ Z �����  b y � �� ) b �� y � % ^ ì� �F�  b �� y � % ° ^ ì��'	 !� �# 	 # 8 % 1F�  m b ° b �� ) l)� ° ���� % ^ Z � (122)

In deriving Eq. (122) we used Gauss’ theorem and the fact that � y _ � � on the surface

�
of the

perturbed cavity. Referring to Fig. 19, we see that

� � � 8 	  � and write for the left side of Eq. (122)

�F�  b �� y � % ^ ì�� �F� f  
b �� y � % ^ ì0	 �H�"�  b �� y � % ^ ì��'	 1 �"�  b �� y � % ^ ì��

because � y E 8 = 0 on

� 8 . Substitution into Eq. (122) gives# 	 # 8 ��	 ! � �"�  b �� y � % ^ ì$ �  m b ° b �� ) l)� ° � �� % ^ Z � (123)

Fig. 19: Resonant cavity perturbed by a change in shape: (a) original cavity; (b) perturbed cavity
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Equation (123) is the exact expression for the change in the resonant frequency. However, it is of little
use since we do not know the quantities E, H of the perturbed cavity. But if the perturbation is small, E,
H can be replaced by E 8 , H 8 in the denominator of Eq. (123) because it is essentially the stored energy in
the cavity and this will not change much. In the numerator we approximate H by H 8 and use Poynting’s
theorem,

� �"�  b �� y � % ^ ì�~ � �"�  b �� y � � % ^ ì��'	 !*# 8 1 � �  m � b�� � - 	 l � � � � - % ^ Z �
which finally gives for Eq. (123)# 	 # 8# 8 ~ $ � �  l � � � � - 	 m � b�� � - % ^ Z$ � f  l � � � � - ) m � b�� � - % ^ Z �  � 	 	  � b� 	 ) � b � (124)

The terms
 � 	 ,

 � b are the changes in the stored magnetic and electric energy, respectively, and

� 	 ) � b is the total stored energy. The result shows that the frequency may either increase or decrease
depending on the location and the character of the perturbation.

The formula (124) was derived by pushing the cavity wall inwards by a small amount. It seems
reasonable to suppose that introducing a small metallic object into the interior of the cavity should perturb
the frequency in a similar way by an amount depending upon the local fields, and thus we could use the
frequency shift to measure the field strength at an interior point. This is in fact the case. We might
further suppose that we only have to perform the integration of the unperturbed fields over the volume
of the perturbing object. This, however, is far from the case because the object perturbs the field in
a way that is essential. In order to calculate the field perturbation we follow a procedure for a small
metallic sphere as outlined in Ref. [6]. With the well-known electric field of a metallic sphere in a
homogeneous electrostatic field the volume integral over the electric field was performed when changing
the sphere radius from s 8 to s 8 ) ^ s 8 . For the total perturbation caused by the sphere of radius s 8 the
resulting expression was integrated from zero to s 8 . In an analogous manner the volume integral over
the magnetic field was carried out. As a result form factors for the volume integrals in the numerator of
Eq. (124) were found: îebd��| SeK � î 	 ��| S�� �
In general, these form factors depend on the shape and orientation and material of the perturbing object.
For some geometries, like ellipsoids, they are calculated [6]; for other more complicated geometries they
can be determined experimentally [7].

5 MEASUREMENTS

Measurement techniques are a vast and complicated area. Here, I present a few basic techniques directly
related to the subjects treated in the previous section.

5.1 Line mismatch
An old-fashioned but instructive way to measure a line mismatch is with a slotted line, Fig. 20. A
movable capacitive probe measures the voltage standing wave ratio, Eq. (33), along the mismatched line.
This yields the magnitude of the reflection coefficient. We further know from Section 2.3 that the first
voltage minimum occurs at a distance � min from the loadK 4�� min

� � 	 R
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Fig. 20: Standing wave detector: left: complete device with slotted rectangular waveguide; right: probe in waveguide

which fixes the phase � of the reflection coefficient.

An alternative solution for measuring the magnitude of the reflection coefficient is shown in Fig. 21.
A fraction of the forward- and backward-travelling power is coupled out by two directional couplers, giv-
ing the measurements shown.

Fig. 21: Measurement of the ratio of backward ( � á ) to forward ( � å ) travelling power with two directional couplers � å , � á .
5.2

�
-value and coupling factor of a cavity [8]

Let us consider a cavity coupled to a signal generator via a piece of a transmission line and a coupling
device. The source has an internal impedance

F 8 equal to the line impedance. The equivalent circuits are
shown in Fig. 22.

�¬Ë
represents the self-inductance of the coupling device and � the mutual inductance

between it and the cavity inductance
�

. The terminal plane of the coupling device is presumed to be
located at some arbitrary position a–a near the cavity. The coupling device is assumed to be lossfree.
The circuit can be simplified further as shown on the right of Fig. 22.

The normalized impedance at the terminal plane a–a is thenF��<�F 8 � !�� ËF 8 ) JF 8  �#�� % -� · ) !v �# � J S #n� % (125)� ! � ËF 8 ) 4 ËJ ) !N �# � S � · % ³ J 	  �# 8 S # % - µ ~ ! � ËF 8 ) 4 ËJ ) ! K � 8 r �
where � Ë � # �ÎË , 4 Ë �  �#�� % - S F 8 � · , r �  �# 	 # 8 % S # .

The analysis can be simplified by shifting the reference plane to a location where the term with� Ë vanishes. Such a location is called the detuned-short position because a short circuit will appear
if the resonator impedance is far off-resonance. We find the detuned-short position by transforming the
impedance

F,�<�
with a piece of line of length a . From Eq. (35) follows
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Fig. 22: Cavity coupled to a generator through a line; left: equivalent circuit; right: equivalent circuit with the impedances

referred to the primary

F*æ�æF 8 � F �q� ) ! F 8�&® « 4aF 8 ) ! F��q� &® « 4a � (126)

which is zero at &® « 4�a � ! F*�<�F 8 ��	 � ËF 8 for
F*�<�F 8 � ! � ËF 8 � (127)

Substituting Eqs. (125) and (127) into (126) gives the simple expression for the impedance at the detuned-
short position: F*æ�æF 8 � 4J ) ! K � 8  r 	 r 8 % � (128)

with

4 � 4 ËJ )  � Ë S F 8 % - � r 8 � 4K � 8 � ËF 8 � 4 Ë �  �#�� % -F 8 � · �
Equation (128) represents the impedance of a parallel resonant circuit with a resonant impedance 4 F 8 .
In the Smith chart, Fig. 23, it is a circle with the centre located on the real axis and touching the points�� � S F 8 �|� . At resonance the circle cuts the real axis at the point s 8 � 4 . This determines the
coupling coefficient. If

s 8 � 4-��� �� ' J� J0 J the resonator is ��� ��
undercoupled
matched
overcoupled

with
� b�� > ��� ��

0 � 8� � 8 �' � 8
At certain frequencies the imaginary part of the denominator becomes equal to ` J , thenF�æ�æF 8 � 4J ` ! �

97



Fig. 23: Identification of the half-power points from the Smith chart. The � f locus is given by ����� ; ��� by ������� � ; ��¡£¢D¤
by �t��� .
and the real part of

Fnæ�æ
equals the imaginary part. The locus of these points is the dashed segments s � ± % in Fig. 23. They cut the impedance circle at frequencies

r Ë
and

r - and determine the unloaded�
: K � 8  r Ë 	 r 8 % � JK � 8  r - 	 r 8 % �'	 J¦¥ � 8 � Jr Ë 	 r - � (129)

The coupling coefficient 4 is also the ratio of the power radiated from the resonator into the
external circuit to the power dissipated in the resonator4 � � b�� >�9[ � � 8� b�� > � (130)

Eq. (130) together with Eq. (93) gives for the loaded
�

J� f � J� 8 ) J� b�� > � J� 8 ) J� 8 � 8� b�� >
or � f � � 8J ) 4 � � b�� > � � 84 � (131)

We write Eq. (128) in terms of
� f and

� b�� > ,F*æ�æF 8 � 4J ) ! K � f  J ) 4 %  r 	 r 8 % � 4J ) ! K � b�� > 4n r 	 r 8 % �
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and see that for frequencies
rw§

,
r > at whichK � f  r 	 r 8 % �¸` J or

� f � J S  r¨§ 	 r > % (132)

the impedance is F�æ�æF 8 � 4J ` !c J ) 4 % ) JJ S 4 ` !� J ) J S 4 % �
The locus of these points is ± � J ) s and is given by straight lines in Fig. 23. They cut the impedance
circle at frequencies

rw§
and

r > and determine the loaded
� f . Finally, for frequencies

r ñ
,
r ø

at whichK � b�� >  r 	 r 8 % �¸` J or
� b�� > � J S  r ñ 	 r ø % �

the impedance is F*æ�æF 8 � 4J ` !*4 � JJ S 4 ` ! �
with the locus of the points given by ± � J (dot–dashed line in Fig. 23). The intersections with the
impedance circle determine

r ñ
,
r ø

and thus
� b�� > .

5.3 � upon
�

of a cavity [5], [9]
The measurement of the resonant frequency and

�
-value of a cavity is relatively easy. More difficult

is the measurement of the shunt impedance. We use the definition of the � upon
�

, Eq. (110), for a
standing wave cavity where the electric field is proportional to ¤g¥y¦  "!�# �Ì% . Then, Eq. (110), together with
Eq. (112), is equivalent to� � � J# 8 � ���� 1 _ C  � % 9 ;&=?> d � ���� - � J# 8 � ���� 1 _ C  � % 9 ; Ö > d � ���� - �
for a relativistic,

` ~ � , × � # S � , particle. This can be written as� � � JKeR î 8 � , ¹ 1 _ C §g¨�© × � ^ � » - ) ¹ 1 _ C ©&ªr« × � ^ � » - 7 � (133)

Next, we make use of the perturbation formula Eq. (124) where we choose a trajectory with zero
magnetic field, k 8 �Ä� , and where we write the integral over the perturbed electric field with the aid of
a form factor © b :  ## 8 � J� � © b m _ -8 � (134)

The term © b depends on the material, size, and shape of the perturbing object (bead). Since _ 8 is a
function of the position � ,  # �  #¬ � % . Identifying _ 8 in Eq. (134) as being the accelerating field _ C
in Eq. (133), we get after substitution
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� � � KR î 8 © b m ,«ª¬ 1  #¬ � %# 8 §g¨�© × � ^ �®¯ - ) � 1 H  ## 8 ©&ªr« × � ^ � � - 7 � (135)

Therefore the problem is reduced to the measurement of the frequency shifts
 # S # as a function of the

position z of the perturbing object. Instead of the frequency shift it is easier to measure the phase shift of
the signal which is related to the frequency shift by (see Eq. (99))&® « ý � K � f  ## 8 � (136)

A set-up to measure the phase shift with a network analyser is shown in Fig. 24. The perturbing bead
is pulled through the cavity by a stepping motor while the network analyser continuously measures the
phase.

Fig. 24: Bead-pull measurement set-up for measuring the ° upon � of a cavity
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