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ABSTRACT

Afier a brief mathematical introduction, Maxwell's equations are discussed in their
most general form as known today. Plane waves are considered in unbounded
media, with the laws of reflection and refraction at a planar interface. A general
theory of waveguides and cavities is then developed in detail. Periodically loaded
waveguides are given as an example of accelerating structure. The parameters
which characterize the interaction of resonant cavities with a particle beam are
introduced, for both longitudinal and transverse motions.

1. MATHEMATICAL REPRESENTATION OF PHYSICAL VARIABLES
AS A FUNCTION OF TIME

1.1 Sinusoidal variables (time-harmonic electromagnetic fields)
Phasors
Real sinusoidal variables
a(t) = a,, cos (ot + ¢)

are represented as
Re[amej(ﬁnq’):l =Re[4 ¢/ (L)

where A e/ (with @ 2 0) is called a phasor and A = a,, /% is its complex amplitude.

When the differential equations determining the physical variable a(z) are linear with real coefficients,
any complex solution of the type A e/ yields two real solutions which represent physical quantities:

Re(A ej‘”’) =|A| cos (wr +¢)
Im(4 &) =4 sin (e +¢)
Since these solutions merely differ by the time origin, it is sufficient to keep only the first one.

A (capital letter) is the complex amplitude of the real sinusoidal variable a(z) written as a lower case
letter.

|Al is the amplitude ap; arg (A) = ¢ is the phase of a(z).

In Eq. (1.1), the phasor A e/ may be replaced by its complex conjugate; in fact both conventions
are used in the literature. Here we will adhere to the e/ convention because it is always used in RF
engineering, in particular in all measuring instruments; the e-‘%* convention is often used in theoretical
physics. In order to translate results from one convention to the other, simply rcglacc Jj by (-i). The
usefulness of phasors stems from the fact that they are eigenfunctions of the operator /3¢, with eigenvalue
jo. The exponential &/%* can be factorized out of all linear differential equations; finally the equations are
written using the complex amplitudes of all variables, with 3/37 replaced by j®. This formalism also
applies to sinusoidal variables which are exponentially damped with time. In that case ® is complex:

jo=jo;—o; where ©),0, arereal positive quantities . (1.2)



Time average of the product of two sinusoidal variables

If a1() = Re[A el®], a(t) = Re[A; ei®], we have
ay(t)ay(1)= %[Alcwobltﬂlmlr + Al*c'alt‘jml’] .%[Azc"alfﬂ'mlt + A;c—alt_jmlt
= %[AIA; +A1*A2 + AyAy e2iop ATA; e—2ju)1r] 2000
e

In Eq. (1.3), the first term is slowly (or not at all) varying with time; the second term is oscillating at
a frequency 2w; and will be discarded. If the variables are damped, it is convenient to consider that the
factor =% is included in their complex amplitudes, so that (1.3) reads

a(0ay (1) = Re(% AlA;) = Re(%A]* Az) (1.4)
Examples:
P= Rc(% VI *) ; %VI " is called the complex power (L4a)
v2(0)= 2V (L4b)
Vector phasors

Real vectors which vary sinusoidally with time are represented by 3-component phasors:
a(t)= Re[ﬁ ejmt]

If the vector A is real or if it is proportional to a real vector, the physical vector @(?) is linearly
polarized along the direction defined by A. If the vector A is not proportional to a real vector (we then
say that A is complex), it is possible to find a real vector 7 of unit length such that 7i- A = 0. The physical
vector @(1) then always lies in a plane perpendicular to 7 where its extremity describes an ellipse in the
course of time: a(z) is said to be elliptically polarized.

Scalar (or dot) product
From (1.3) we have
a(0)-B(1) =5 [Re (A-5")+Re (. B e2/or)| 2o

The slowly (or not at all) varying term involves A - B *, whereas the oscillating term involves A-B. In
particular, if A+ B =0 the scalar product @()-5() is slowly (or not at all) varying with time, but its value
is not zero unless Re(f( -B *) = Re(A'* ~§) =0; this will be the case, for example, if one of the vector A
or B is real, which means that one of the physical vectors @ (t) or b(¢) is linearly polarized.

Time average of d(1)-b(z) = Re%(AxB; + AyB; +A,B, } = Re-;-(ﬁ : E*)
12
Time average of &(t)-2(¢) = %(|Ex|2 + ’Ey|2 + IEZ|2) - %lEl

Example:

Time average of the electric energy density stored in a dielectric =



Vector (or cross) product

Time average of [E xﬁ] = Re %[E XH*]

wmplm vector
1.2 General time variation
Fourier ransforms
For a general time variation, we use Fourier transforms:
1+

7)== [F(0) /a0 Flo)= [£(t) e

This representation uses positive and negative frequencies, i.e. a two-sided frequency spectrum.

If ft) is real, F(—o) = F*(®) M and

f(t)=Re lTF((;))ejw do
T o

Complex representatign of the variable f(1),
as a superposition of phasors with positive
frequencies (one-sided frequency spectrum).

Laplace transforms

Convergence condition: With o real, in (1.7) If7)l must decrease fast enough when ¢ — oo,

To get around this problem, we use unilateral Fourier transforms:

E@)=T70) e F(0)= |fl) e i%a
0 oo

With p = ¢ + j,

p\_< p)_° ‘
R(E)-Tr0 cra E[2)- f e
I/ o
F, may be continued analytically for ¢ >a where a<0
F_may be continued analytically for c< b where 0<b .

Let H(¢) be Heaviside's unit step function:

0 for t<0
H(1)=¢1/2 for t=0
1 for t>0

F () is the Fourier transform of the causal function f{t) H(t); F.(p/j) is its Laplace transform.

(1) This relation holds for ® real; for ® complex we would have F(—®) = F*(®*).
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Inversion formula for Laplace transform:

f(z)H()=—1—C+J'°°F+(3) e”dp  as<c

21 ¢ jeo  \J
1 C+]°°
FOH) == | p( Jepf c<h
C ]°°
1 C+]°°
f)=— | F( ] ePdp a<c<h 1.11)
20 o \J

Hilbert transforms

The Hilbert transform of a complex function f(x) defined on the real axis is another complex function
g(y) also defined on the real axis by

H[f(x)]= g) =2t L8y, (L12)
T x-Yy
where the integral is taken as a Cauchy principal value.

It can be shown that

ﬂ[g(x)]ﬁt: f—(_’%dx = - f(y) (113)

Examples

1)  Hilbert transform of &/« with respect to ¢

jo e/ P ; i
H,[e’“"] f+°°—l—dt 1ot J+”Tdt=%c”m If:ism—(tmz—)dt:j sgn(®) /™ (114)
- T

2)  Hilbert transform of e/®* with respect to ®

joot
H [e’w} J”’; _do=j sgn(r) /" (1.15)
n

Causal function in time: ft)=0 fort<Q.

Its Fourier transform then reads
F(o)= [ f(1) e /¥d:
0

With (1.15)

H{F)]= =22 T 7 ¢ % I &t fOL T2 e -jZat £y et
o) .
H[Re F(0)]=Im F(w)

H{F(@)]=-] F@) hence i ro)l—Re F(o)

(1.16)

Causal function in frequency. F(®) =0 for ® <0.

Its Fourier transform reads



()= Z—IRZF(O)) /¥ 4o

With (1.14)
[ £(1)] = %I ¥ %%ZF(@ ¥ = ﬁ:j;dc) F(m)i] +e f—’-;ef‘”‘ - ﬁcho F(o) &/
H7()]=j f() hence ;‘%xﬁﬁ;ﬁ"}g) (L17)
Application: In (1.8) we write
;IC-ZF((») e/“dw = f(1)+ jg(t)= Alt) ¢/*“) =5(1) with f,g andA, @ real (L18)
The complex function s(z) is of the type f(7) in (1.17); therefore
Hf(1)]=—g(t) ie g(t)= —%Ji: ti_(ft)—,dz (L19)

To the real function f{t) we can associate a complex signal s(f) whose real part is ), and whose imaginary
part is obtained as -H [f{1)].

The modulus and argument of s() allow a natural definition of the instantaneous amplitude, phase
and frequency of the real function (1) as (1, 2, 3, 4]

A(t)=|s(t) o) = arg [s(2)] Q(t)=d3—(:) (1.20)
Moreover

4oo too 100 ‘ . N
| A2(l)dl= i dt%jF(o)) ijtdu)%jF*((o') eI ey’

- —00

= 2T do jdo' F0)F *(0) 5(0-)=2 [dolF)? =L TaoF@f =2 £
To o T T e

from Parseval's formula applied to (1.7).

Therefore, since A2(z) = 12(2) + g2(1),
o0

TP 0a=T foa=1T a2y .2y

This relation is similar to (1.4b).
1.3 Useful vector identities

We will make repeated use of the following vector identities:



div(Ud)=d-grad U + U diva div(U grad V)=gradU gradV+U AV
curl (U@)=[grad Uxd] + U cul@ curl grad vV =0

div [5x5]=5-curla' - & -curlb div curl @ =0

2. MAXWELL'S EQUATIONS AND SOME APPLICATIONS
2.1 Maxwell's equations

Let

H

free electric current density
free electric charge density

free magnetic current density

i
3 ©
It

Pm = free magnetic charge density

Although magnetic currents and charges do not exist in nature, they are useful mathematical tools as
equivalent sources for electromagnetic fields ([5], p. 46 and 52).

curll-1=f+%—? divD=p
2.1
CurlE=—jm—-a§- diVE:pm
ot
Since divecurl = 0,
.= dp .z . 0p
divJ +—= div/, + 2= 2.2
AF? VIm TS @2

Equations (2.2) express the conservation of electric and magnetic charges.

Constitutive relations

These relations link the inductions D, B to the fields £, H; they describe the electromagnetic
properties of a medium. In general

+
B=poH +poM 2.3)

where

Pl

P = electric polarization = electric dipole moment density

oM = magnetic polarization = magnetic dipole moment density

M = magnetisation (equivalent electric current = curl M)

The definition (2.3) introduces an asymmetry between P and M. This is an historical definition
([6]..p. 12) and the most common one in the literature; but some authors do not write a factor i, in front
of M.

At a given time, P and M depend on the previous history of the sample. For lincar media, by
superposition P (f) can be written as a convolution



P(t)= } p(t=1) E (t)dr= Tp(z—t’) E (¢)dr (2.4)

where
p(t)=0 for t <0,

which is the definition of a causal function in time.

In frequency domain with @ real, (2.4) becomes (here the Fourier transforms are represented by the
same symbols as the time variables)

P(o)=p(o) E (@) with p(-w)=p"()
so that

D(w)=¢(w) E (@) where g(@)=gq+ p() (2.5)
The relation between D and E is simple only in frequency domain. In general, €(®) is complex:
go)=¢'(0)-je"(@) with e(-w)=e'(®): ¢ even, £ odd function of ® (2.6)

Since p(1) is a causal function, from (1.13) Re p(®) = Re [g(0) - &,)] and Im p(®) = Im [¢(w)] are Hilbert
transforms of each other:

1+ () -gg o , 17" (w)

do’ 2.7

e"(a))=—2—mj—-——d£'((g')_§° o’ £'(w)-¢gg =Z_"9—§—(ﬁ)§)d(o‘ (2.8)
Ty 0-e T,0°-0

€"(®) = 0 would imply €'(0) = &,. For any dielectric medium, there are frequencies where £"(@) # 0,

which corresponds to a time lag between the polarization P (w) and the applied electric field E(w), i.e.

hysteresis. We will show later (Eq. 2.38) that ® £"(®) > 0 in all cases whereas [€'(®)—€o] may take any
sign. The loss tangent of the dielectric is defined as

tan 5= 2.9)
€

A typical behaviour of £(®) near a resonance is shown in Fig.2.1.

(¢'~¢&,), even

£”, odd

anomalous dispersion

Fig.2.1 Absorption and dispersion in the neighbourhood of a resonance frequency




A simplified theory of dielectrics ([7], p. 32-7; [8], p. 19) yields

8((.0)— € _ Fn
g0)+2g) 02 -0+ jo,o

with  «, <<,

Similarly, we write B(w) = p(0)H(®) (2.10)

where Ko) = p(0)- ju" (o) (2.11)

The variation of p with frequency is more complicated than for €. Nevertheless, the resonant type

behaviour shown in Fig. 2.1 also applies for the effective . of a right-hand (+) circularly polarized wave
in a ferrite ([8], p. 298).

Up to now we have implicitly assumed that the medium is isotropic, so that € and p are scalar
quantities. For anisotropic materials, € and | are tensors of second rank, i.e. matrices (of order 3 in 3
dimensions). If €, t are symmetrical tensors, the material is reciprocal; if €, | are asymmetrical tensors,
the material is non-reciprocal (like ferrites) ([9], p. 409). Loosely speaking, reciprocity means the
possibility of interchanging source and detector (or generator and receiver) without affecting the results of
measurements. In particular, in a reciprocal medium the propagation constant of a wave is the same for the
two opposite directions of propagation.

The condition for reciprocity thus reads

€=¢ L=p (2.12)

where a tilde represents the transposed matrix. It can be shown ([9], p. 53) that the condition for a2 medium
10 be lossless reads

~% +

g=§ =¢ p=p"=p* (2.13)
where the + superscript represents the hermitian conjugate matrix.
In nonlinear materials (like ferromagnetic materials), € and | depend on the field strength.
For chiral media, the constitutive relations take the general form
D=¢E+EH
(2.14)
B=mE+uH
where & and 1 have the same dimension as /€g Mg . This is the only form of constitutive relations which

is Lorentz covariant ([9], p. 7). In the most general case €, W, &, n are second-rank tensors and the

medium is called bianisotropic (bi because the constitutive relations involve both E and H ). It can be
shown ([9], p.409) that the conditions (2.12) for reciprocity are supplemented by

E=-1n (2.15)
whereas the conditions (2.13) for a medium to be lossless must be supplemented by ([9], p. 53)

- %

E=1 =n" (2.16)
These relations show that & or nj cannot vanish without the other one also vanishing.
Example: Media which rotate the polarization plane of linearly polarized light. This is called natural optical

activity; it does not require an external magnetic field as the Faraday rotation (which is nonreciprocal)
({81, p. 297).



In isotropic media with natural optical activity ([10], p. 19)
. ka . ka
SeoNeTEz N Taa

where k% = @2e) , and a is a length smaller than atomic dimensions; for quartz, a = 0.01 A as deduced
from ([13], p. 6-248).

Research is now going on to develop chiral materials for microwave frequencies.

Conduction current

Ohm's law states that
J =0E (2.17)

where o is the electric conductivity of the medium. Strictly speaking, this relation is again only valid in
frequency domain:

2
. Ne
with 6= somf,t , (of, =

__G¢o
1+ jort

2.18)
€y mg

where N is the number of free electrons per unit volume, @, is their plasma frequency, and 1 is the mean
free time between collisions of the free electrons with the ion lattice (7], p. 32-11; [11], p. 121; [12],
p. 287). For copper at room temperature, T= 2.4 x 10-14s; therefore, the approximation ¢ = 0, is valid
up to frequencies such that @t = 1, which corresponds to f = 6600 GHz or A =45 um. In the microwave
range, we will thus consider that ¢ is independent of frequency.

Remark Due to the Hall effect ([13], p. 9-27), in the presence of a magnetic field the current density is
such that

J= G(E + R[f X ED
where R is called the Hall coefficient. From this relation it is easy to derive
{1 + (cRE)z}f = o{E +0R[E x B]+ (oR)*(E- B’)B’} (2.19)

For copper at room temperature, ¢ = 5.8 x 107 Q-1 m-1 and R = -5.5 x 10-11 m3 C-! ([13], p. 9-39)
hence 6R =-3.2 x 10-3 (Tesla)-!. The relative correction introduced by (2.19) with respect to Ohm's law

(2.17) is of the order 6RB, that is —0.032 for B = 10 Tesla = 100 kG; this is negligible for all practical
magnetic fields.

Total current

Conduction current + displacement current = E + joD = (6 + joe)E

When o # 0, the effect of a conduction current can be represented by the complex permittivity

6 _ ., (.. 06\ , .C+tue
e+—=¢—jle"+— |=€—j
Jjo [0}

(2.20)

At a given frequency, the dielectric losses (€") cannot be distinguished from electric conductivity; in fact
(2.20) shows that the electric conductivity may be considered as part of the complex permittivity.



Decay of electric charge inside a conductor

In frequency domain, (2.2) reads
divJ + jop=0
With (2.17) and div D = p it becomes, if /€ is uniform in space:
o , .
E—p+ jop=0 hence o+ joe=0
Using (2.18) we obtain
og +(1+ jot)jo e(w)=0 (2.21)

This equation determines the eigenfrequencies o of the conductor. If we look for the eigenfrequencies

which lie outside the absorption bands (these are due to bound electrons), we may take &) = & and
(2.21) becomes

(jm)2+jcm+29-t=0 .

Therefore
2 4 g

which means that
_ L[l- T_ 5o }

p=pg e L2Vt ® 2.22)
-1
op{l, |1 op
oy 1 ) ’?[5* PR }
If E—O'c < 7 the charge density in the conductor decaysas e~ °
0

Even for distilled water, the time constant £,/G, is as short as 106 s.

P
If 0—01= T2 4 , i.e. with a damping
€0

time 2t ([12], p. 329); this is the case for all metals.

2
(0) p'l:) > % the charge density decays as ¢

Poynting vector [E xH ] in time domain.

From Maxwell's equations we can write

-div[ExfI] =E-cul H-H-cuwlE
\—W—__J
inward flux of Poynting vector per unit volume
= - o - oD - 9B
= E-J+H-J + E-—+H — (2.23)
(__W__J"') ( ot ot J
power released per unit volume ~ 4

5 where W = energy density
!

10



We see that

SW=E-8D+H-5B (2.24)

which is the correct expression for the work done in all cases, in particular when there is hysteresis, and
part or all of the work is transformed into heat.

For linear, nondispersive and lossless media, where € and M are independent of field strength, of
frequency, and satisfy (2.13), we have when £ =n = 0:

w=1£5:15.5 2.25)
2 2
For isotropic media (g, scalar and real) this reduces to
w:%u}%%uﬁz (2.26)

Complex Poynting vector and stored energy for time-harmonic electromagnetic fields
In the following, we consider a complex frequency
® =0 + joy JO=—0 + joy with 0o << (2.27)
Then, to first order in & we have

e(0) =e{an)+ jalg—:)(ml) +... (2.28)

and similar expressions for i, &, n (which are supposed to be second rank tensors).

The relation
—div [Exﬁ*]=f‘curl A -7 -cunlE
becomes with Maxwell's equations
~div [Exﬁ*] =E. [.7* +(-oy —jo)l)D*]+ A (~oy + jon)B

* *
—div [Exﬁ*]=ﬁ-f*—i‘(a1+jml) {(u-jalg%) E*+[§+ja1§%) 1?':]

- . . d'rl - , du -
+H" (—oy + jo ( + jo ——)E+( + jo —-—)H} 2.29
(111){7111“) pjldm (2.29)
where all quantities €, p, &, 1 are taken at the real frequency ;.

To first order in 0,1 we have

, _deY : de’ de'), . x . ode
(a1+1m1)(e+jala) =(a1+}ml)(e*-1ala]=al(e*+0)1£ + jo€ -jalza

=0y Ed(;(ox:‘% jo)ls* +... (2.30)

11



. . du) ( du) _ _opdp d .
-0 + jO + jo— |=—-0 + o — - — =0 — () + jo i +... (2.31
(o + 1)(11 J L 1| K mldm + joju - jaq e 1d(0( )+ jonp (2.31)

Therefore

—div [E X I?*] =E.J" - E-[al ad-(;(me*) + jcole*}E‘* -E. [al a%)-((oé*) + 1(01@*}1‘7*

- & d a

. 2 d . =~
+H '[—al a(am)+ jcom}E +H »[—alao-(muﬁ jmlu]H

div [Ex )= -7 - an{E oe')E' + B L) A"

“do

d

E+H  —
(@n) P

(mu)ﬁ}
+ jml[—ie*i:"* ~EEH +H nE+H ufl] or jcol[-f Do)+ H® ~§(col)](2.32)
Taking 1/2 Re of this expression yields the average power flowing into a unit volume:

%RC(E T *) is the power delivered to the current J;

%Rc[-al{ H=-204 %Rc{ }= —a-a—v:i where W= %Re{ } is the electromagnetic energy stored in a unit

volume;

-k -k -

%Rejcol[-f D'(wy)+ A" - B(o, )]=92i Im [—E -D(w;)-H ‘B(a)l)] is the power dissipated as heat
by hysteresis.

For the density of stored electromagnetic energy we thus obtain

W= %RC{E* _c;i_m(me+)é+ﬁ* '(;i—m((ou)ﬁ+ﬁ* %[m(g'* +T])]E} (2.33)

and for the power lost as heat by hysteresis:
Poysteresis =%Im{—i* '(SE*'@H)“H* -(nl?+u1?)}= '(%LIm{-E* eE-H" ‘IJE‘FI:}* (§+ —‘n)é} (2.34)

Let us remember that in (2.33) ® must be taken as real. Also, by taking the hermitian conjugate of the first
term in (2.33) we see that

Re{g* 'a'da(w )E} - Re{é* -a%)—(me)ﬁ}

With € =1 = 0, the expression (2.33) has been given by Landau and Lifshitz ([14], p. 255) and by Collin
([8], p. 28; [15], p. 16). When &, [ are scalar quantities it becomes

W=W,+W, = -}Ia%(me') |E[2 + %E%(mu') |1r-”1|2 (2.35)

where W, W, are the electric and magnetic energy densities.

This expression loses its validity in regions of anomalous dispersion ([14], p. 256) where it would
yield negative values for W. At frequencies where dispersion is negligible, it reduces to the well known
formula

-2 1 12
W=W,+W,= %s’!EI +o wlAl (2.36)
which is the time average of (2.26).
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When g, i, &, 1) are scalar quantities the power loss by hysteresis (2.34) becomes

Paysteresis = 92_1_{8.15'2 + H”|E‘2 + Im

(& -n)E FI}} 2.37)

This expression must be positive for any field £, H; this requires that

g
we"20  op'20 g'u'2 ———5—3 (2.38)
In the following we will restrict ourselves to isotropic and homogeneous media where & =1 = 0.
2.2 Boundary conditions at an interface between two different media
Normal components
€414 94

Fig. 2.2 Closed surface for div equations. 7 is a unit vector normal to the interface

Electric surface charge
div D = p (free electric charge)
D, -dS — Dy -dS = pdS
n- (52 - 131) = p,(free electric charge surface density) (2.39)
Magnetic surface charge
divB=p m
n (Ez - El) = p,ns (free magnetic charge surface density) = 0 (2.40)

Tangential components

ds
dh

=23

Fig. 2.3 Closed contour for curl equations. 1; is the surface density of electric current.
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curlﬁ=f+~a—D-
ot

With Ts representing a unit vector along s, this yields

Hy-d5 - Hy - d5 = ids [ iix T = iy -[ix &5] = &5 -[£, x ]

— -

(Hz—Hl)t=[i;Xﬁ] or [ﬁX(ﬁz—Hl)]=z;

cmlE=-fm—a—B

ot

(Ez—El)t =—[Zns)(ﬁ] or [ZX(EZ_EI)]=—2;HS=>O

Remark. The condition
(H2 - Hl)t = [is X ﬁ]
entails
h’-(curlflz —curl I:Il)= n-curl [Z; x?z]
From the definition of curl, this is
1,0+ .
Ef[zs x 7i]-d§
‘%_/
line integral of [isxiz'] along a closed loop of area §
which is also
1,- (. I
E}ls (Axds]=-divi ,

the surface divergence of z; (by definition of div). Combining with (2.41) we have

_divi, =ﬁ.[(f2_f1)+%(52_51)]

With (2.39) this reads

.3 T\, 0p
divig+a-(Jo-J1)+—=%=0
s n(2 1) ot

Conservation of free electric charge at the interface

From (2.43) there is a similar equation for the conservation of free magnetic charge at the interface.

In particular, if there is no free surface electric current along the interface,
(Hy - A, )‘ =0

entails
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(2.44)
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ﬁ~(f2—f1)+%ﬁ-(52—51)=0

from Maxwell's equation (2.41). This relation means that the total current (conduction + displacement) is
continuous when flowing through the interface. When rewritten as

—

(02 + jwey) 7i-Ey~ (o) + joey) 7-Ey =0, (2.46)

it also shows that gven if there is no surface current, there is a free surface electric charge
Ps =|Eafi- Ey —g1ii - Ey ) at the interface between two media with non zero conductivity, unless

02 _&
o, §

Similarly, since there is no free magnetic charge nor current along the interface,
(Ez - El )‘ = 0

always entails

from Maxwell's equation (2.43).

. Therefore, when o # 0 it is sufficient to impose the continuity of the tangential components of £ and
H ; eventually the discontinuity of the normal component of D will yield the free surface electric charge.

Case when the medium (1) is infinitely conducting (0 = o)

From J = 6E we have E = 0 inside the conductor. It is just sufficient to impose 1.732, =0 at the outer
surface of the conductor. From (2.43) %—B=O inside the conductor. When ® # 0 this requires
t

By =1H, =0 ; by (2.42) Hy; then determines the electric current i, at the surface of the conductor.

2.3 Plane waves in isotropic, homogeneous and linear media

In such media €, p are scalar quantities independent of the position in space and of the field intensity.

- - -

J =coF Jn=0
From (2.2) curl H = (6 + jwe)E curl E = — jopH .
The other equations divE=0 divH=0

are automatically satisfied.
The Laplacian vector operator ([16], p. 23)

A =grad div — curl curl

-

is such that (AE)g = A(Eé)

in cartesian coordinates, where §=x, y, z.
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Maxwell's equations are equivalent to

- —

AE = jop(c + joe)E  with divE=0
with the same equation for H .

Let k? = - jou(o + joe) (247)
with Relk) o ©
®
The previous equation reads
AE+K*E=0 with divE=0 . (2.48)
The simplest solution to this equation is a plane wave
E=Ey e /%7 (2.49)
where
E‘O is a complex vector independent of the coordinates
k isa complex vector with components Ky, ky, k;
k- F=kex+kyy+k,z
In cartesian coordinates, (2.48) reads A(E§)+k2E§ =0
2
hence (ke ) +(=iky) + (=il K7 =0
2 2.2 2 2.50
or 2k =k (2.50)
The condition divE=0
reads —JjkyEy = JkyEy — jk,E; =0
or ] k-E=0 ] 2.51)

With (2.49), the magnetic field A can be obtained as

(*) The general expression for K is
k? = - jo(p'— ju")(0 + we” + joe’) = [mza’u‘—mu"(o + (oe")] — jo[u (o +@e")+ €' (wp”))
In the transparency ranges where € > 0 and 4’ > 0, from (2.38) we have

Im{k?)  Re(k) Im(k) _
[0} (0]

0

Therefore the condition Re(k)/® > 0 is equivalent to Im(k) <0.
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—jouH =curl £ = 1:grad ik xfz‘o} = [grad(-j]? - F) xE]

= [-jk < E] (2.52)
Therefore H=H, c"ﬂz'? (2.53)
and from (2.52)
L i A=0 EHA=0 | (2.54)

It should be remembered that E - H = 0 does not necessarily mean that the physical electric and magnetic
fields are orthogonal; but they are so if one of them is polarized linearly.

Reciprocally (6+ joe)E =curl H = [—jE X I:I] (2.55)

Equations (2.52) and (2.55) can be rewritten as

H:—[ﬁxE] E=

[ﬁ X 7i (2.56)

where k = kii. From (2.50)

nz' + n2 + nz2 =1 2.57)

which means that 7 is a unit vector; but ny, ny, n; may be complex.

Equations (2.51) and (2.54) can be rewritten as

[7E=0 7 H=0. morcover E-H=0 (2.58)

If n is real, the loci of constant phase (and amplitude) are planes defined by
R -7 = constant ,

orthogonal to n. Therefore the wave is plane, and the vector 7 yields the direction of propagation of the
plane wave; (2.58) shows that these waves are transverse.

Propagation constant y

Itis such that £ ~e~Y*7 ; from (2.47) and (2.49) we see that

y=a+jB=jk=j\/W where .20 , %>0 (2.59)

Wheno=¢"=p"=0, a=0, [ k=B = e } (2.60)

The phase velocity of the wave is v,=2-L 2.61)
B eu

In free space, Vy=C= ! =2.99792458 x10® ms™! (2.62)

vEoHo
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In MKSA units,
Ko = 47-10-7 Hm-! (by definition)

€0 = 1/(1oc?) is a derived quantity

Intrinsic impedance { of a medium for plane waves

It is defined by the relation

From Eg. (2.56)

¢= Jk___Jop | jou | op'+jop’
o+ jwe  jk o+ joe  \(o+we")+ joe

Using (2.59) we have

[= JO _ ou"+jop’
Jk a+ B

with Re() > 0.

(2.63)

(2.64)

In the transparency ranges where €' > 0 and p' > 0, (2.38) entails Re(£) > 0. The last expression in (2.64)

also shows that

(-0)=t'() md fag () <3
hence
| arg (C)|<§

If i =(0,0,1), Eq. (2.63) reads { = EJH,= ~Ey/Hy.
Impedance of free space

From (2.64) and (2.62), {o=+/Ho/€g =c- Hp=30-4n Q = 120x Q.

Density of stored energies

From (2.36), if 7 is real,

w,_ e jou I_‘

u)e’—“—,+ joe’
1!

W u'lfl2| o+ joe|

{0+ we")+ jme'l

When the medium is lossless,c =€" =p"=0 and W, =W, in plane waves.

2.4 Reflection and refraction of a plane wave at the interface

between two different media

(2.65)

If there is a surface current i5, we may consider it as a limit i, = Jdz when the depth dz — 0 and J

— <. But then the Joule power loss per unit area of the surface would be

18



1 1 =2
Pl = 'z—clflzdz = ﬂllsl

For P1 remaining finite when dz — 0, we must have 2; =0: from Eq. (2.42) H ¢ is then continuous at the
interface. The only possible case for a non-zero surface current is when G = oo,

6 [ 62

€240,

X
sy JIL SIS NG I
Oy o,

Fig. 2.4 Plane interface between two different media

Incident plane wave

Referring to Fig. 2.4, following (2.49), (2.51) and (2.63) the incident wave in medium 2 reads

EI=EO C—jkzaol; , ﬁ0~E1=0 , ﬁ{ =C—l-[ﬁo XE[] (2.66)
2
Reflected plane wave
The reflected wave in medium 2 reads
Er=E % | 5 .Eoz0 . i =CL[;,2X§R] 2.67)
2
Transmitted plane wave
The transmitted wave in medium 1 reads
Er=E eMAT | G E o0, B =Cl[;,l xz:;,] (2.68)
1

Boundary conditions: Continuity of tangential components of £ and # atz =0

E[z +ERI = ETI ﬁ[l + FIR! = HT! (269)
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Determination of niand 1

In order to satisfy the boundary conditions at every point of the interface, the arguments of the
exponentials must be identical atz = 0:

k2("0xx + n()y)’) = k2(n21x + nZyy) = kl(nlxx + ”lyy) ’
hence

nox =My kpngx = kym x

noy = n2y k2"0y = klnly (2.70)
where, by (2.57):
2 2 2 2 2 2 2 2 2
Mox + 0y + NG, = Nax H gy, = niy t iyt =1
Therefore
2 2
= 2 2 2

™z =ny; and k%(l—n()z)z klz(l”nlzz):kl _(klnlz) 271

In order to distinguish the reflected wave from the incident wave, we must take
n2y = ~ng;. (2.72)

However, the branch of n;, cannot be determined from the boundary conditions, because both
determinations of np;, satisfy these conditions. In order io specify that the transmitted wave is receding
from the interface, we must take

Im(kyny,)<0 or Re(kpmy,)>0 when Im(kny,)=0. (2.73)
On physical grounds, such conditions are also satisfied by the incident and reflected waves:

Im(k2n02 ) <0 Im(kzngz) >0 (274)
or

Re(kpng,)>0 when Im(kpnp,)=0; Re(kym,)<0 when Im(kyny,)=0
The above relations (2.70 to 2.73) giving 7, iy, contain all the laws of reflection and refraction.

Determination of the tangential components of the reflected and transmitted waves
at the interface of two media.

Relation between the tangential components of E and H
Using (2.58) and (2.63) it is possible to write for any plane wave
Ey Hy
E =7 gl o atz=0: E =2 H, (2.75)
y y

where Z is a 2 x 2 matrix which we now determine.

From (2.63) and (2.58):
E,= C[Hynz ~H,n ]— %[Hyng +(Hxnx +Hyny)ny]= ‘r%'[Hx”‘x"y + Hy(ng +n )]
4 4
Ey = C_,[Hznx - Hxnz] = ‘n—[_(Hx”x + Hyny)nx - Hxnzz]= %[—Hx(nx + ng) -—Hynxny]
r4 Z
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Remembering (2.57) we thus have

Z=£ nyny (n3+n3) _i Nyny (1—n£)

ng —(n3+n22) —nxny, n, ~(1—n§) —nyhy

It is easy to verify that

1 0 - 1
Zz=“C2{O J hence le—-Zz—Z

Reflection and transmission matrices

For the tangential electric field, these 2 x 2 matrices R, T are defined by the relations

Ey =R Ey, Ey, =T Ey
The boundary conditions (2.69) entail that
T=/+R

and that
ZoHy +2yHy = Z1Hy,  with  Hy +Hy = Hy,

Using (2.70) and (2.72) in (2.76) we notice that Zp = —Zj.

Therefore

2Z0H0 = (Z1 + Zo)H1: -
For the magnetic field:

Hy, = (2, + Zo) ™ 22 Hy
For the electric field:

-1
Ey=2Z1Hy, = 22I(Zl + ZG) Ey,

With (2.77) and (2.37) this yields

- -1
T=22(z+2)"  R=(Z-Z)&+2Z)
_ o _ -1
I =(z+2)2z)" R'=(z1+2Z)z-2%)

Eigenvectors of R and T

Let us write (2.76) as

Let
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Then

ﬁZU:—-F 0]F n? nxny
g 0 1] |neny ng

[t is straightforward to see that the eigenvectors of the last matrix, which are also eigenvectors of ZU, are

n
2]
_.nx ny
Remembering (2.57) we have
n n n n n
"_zzu[ y}[ y} ﬁzu[ s =(_1+ng+n3)[ }_{ }
¢ —ny —hy 4 ny ny Ny

ZUL’I; J - —H_"’f } zv[ﬂ = nz[:"] (2.84)
X 2z x b4 b4

The expression (2.81) for R can be rewritten as

i.e.

R=(2- 20U 2+ 2)" = (U - ZgU (24U + ZoU) ! (2.85)
From (2.70) it is obvious that both eigenvectors are the same for the three waves 0, 1, 2. This means that

the eigenvectors for the incident wave are simultaneously eigenvectors of ZgU, Z U and therefore they are

also eigenvectors of (Z;U~ZoU), (Z;U+ZpU), (ZjU+ZpU)-! and finally of R, T. From (2.84) and (2.85)
we obtain the eigenvalues pj, p; of the reflection matrix R as:

EEkd
E 0y —Nox

i.e. when npxEopt noyEoy =0 (with similar relations for waves 1, 2):

-1
Py = (C—l - C—Z)[C—l + iz_] (2.86)
m; "oz \Mz N

EOX nOX
Eoy| Moy

i.e. when RoxEoy — noyEox = 0 (with similar relations for waves 1, 2):

1)  for the eigenvector

2)  for the eigenvector

P2 = (Gam; — Camo, Nams +Lano, ) (2.87)

Physical interpretation of the eigenvectors of R, T

They correspond to particular polarizations of the incident plane wave.
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Case 1
For the three waves 0, 1, 2 we have
nyEy +nyEy =0 (2.88)
With (2.58) this entails E; =0 for all waves.

If the ratio noy/nox is real, the relation (2.88) means that the electric field is normal to the plane of
incidence.

Case 2
For the three waves 0, 1, 2 we have
any - nyEx =0 (2.89)
With (2.63) this entails H; =0 for all waves.

If the ratio noy/nox is real, the relation (2.89) means that the electric field lies in the plane of
incidence.

The eigenvalues of the reflection matrix R, i.e. the reflection coefficients p are different for the two
cases. They are given by Fresnel formulae (2.86) and (2.87), which Fresnel derived for real { and 7.

Remarks

1)  Considering the propagation along z, the two polarizations correspond respectively to TE (E, = 0)
and TM (H, = 0) waves.

2)  For the magnetic field, from (2.79) and (2.78) we obtain the transmission and reflection matrices as
Ty =(Z1+20)'22y Ry =—(21+2Z0) (2 - Zo) (2.90)

Therefore
UTRyU =~U"Y(2y + 24 (21 - Zo)U = ~(ZU + ZoU) (23U - ZoU) (2.91)

The eigenvectors (2.83) of ZU are thus also eigenvectors of U-1RyU, which means that

n n n n
U{ y}:{ "} and U{ "}:{ y} (2.92)
~ny ny ny —ny
are eigenvectors of Ry , with the same eigenvalues as (2.91). Comparing with (2.85) we see that the
eigenvalues of Ry are the same as the eigenvalues of R, but opposite in sign: the reflection coefficients for

the tangential magnetic field are opposite in sign to the reflection coefficients for the tangential electric field.

Surface impedance

At the interface z = 0 the relation between the tangential components of the fields is given by the
matrix equation (2.75) for each one of the incident, reflected and transmitted wave.

1)  TEwave

When H, is the first eigenvector (2.92), by (2.84) this relation simplifies to

n n n
E,=ZU[ y}:—i[ y} with H,zU{ ’}
i ny 7N iy
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Using (2.82) this can be rewritten as
n
E, =£U2{ Y ]=£U H,
n, —nel om,
or in vector form:

E =27[H,x1,] where =n£ (2.93)

Z

Considering the propagation along z, this relation is analogous to (2.63); Z; is called the surface
impedance for either the incident, reflected or transmitted wave.

For the incident wave, Zys = .C_2_
no.,

For the reflected wave, Zy, = L =7y,
n;

For the transmitted wave, 7 = S
Nz

The reflection coefficient (2.86) then reads

—1
p= (le = Zys )(zls + ZOs) (2.94)
which is identical to the reflection coefficient in a waveguide, as given later in (4.21).

2) TMwave

When H, is the second eigenvector (2.92), all the above still applies with {/n, simply replaced by {n,;
in particular we have

Z;=0n, (2.95)

Laws of reflection and refraction

When the ratio ngy/nox is real, it is possible by rotating the coordinate system about the z-axis, to
choose it so that nyy = 0; the plane y = 0 is then the plane of incidence. When the media are lossless and

n, isreal, from Fig. 2.4 we have

nox =Sin @y My, =sinB,  n, =sin 6,
ngy =0 nyy =0 nyy =0 (2.96)
ny, =cos By m, =-cos B, n,=cosB

Equations (2.70) and (2.72) then yield

0, =00  /EoH2sinBp =[ejpusin 6 (2.97)
which are the laws of reflection and refraction.
Total reflection at a dielectric interface

We assume that

n0y=n1y=n2y=0
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There is total reflection if the transmitted wave in medium 1 decays exponentially from the interface; that is
if n, <0 . From (2.70) we have

2
ky = 22”{%): = klznlzx
: . 2_,2 2V _,2 2
or with (2.57): K =k (1-nd, ) = K (1= )
where n%z >0, nlzz <0.
Therefore k12 < k,% < k22 (2.98)

2
With (2.96) this is only possibleif 2= 22,1

kl €]  sin 90

This property is used in dielectric waveguides. Light seems to penetrate at some distance from the interface
in medium 1: it is the Goos-Hanchen shift ([17], p. 25). From (2.71) and (2.96) the penetration depth
(analogous to the skin depth in good conductors) is the inverse of

Re(jkyny,) = Re j k2 - K3(1- ;) =Re k3 sin® 8g -k

but the effective penetration depth is the inverse of

q-k% sin? 8y — k?

where q is a correction factor ([17], p. 27). For TE waves, ¢ = 1; for TM waves, assuming i1 = Ho,
) 2
q= k—zzsin 89 —cos“6y >0
1

When does the incident or the reflected wave vanish?

The formulae (2.80) presuppose that det (Z; + Zg) #0. If det (Z1 + Zo) =0, det T-1 =det R-1 = 0.

From (2.76) it is then possible to have E2; #0 and Ej; # 0 whilst Eg; = 0: in this case the incident wave
vanishes.

If det (Z1 - Zg) =0, det R = 0. It is then possible to have E3; = 0 whilst Ep; #0: in this case the
reflected wave vanishes.

The equivalent conditions det (Z;U + ZoU) = 0 amount to saying that one of the eigenvalues of (Z U
+ Zpl) is zero; from (2.83) this reads

<% t L2 . 0 for TE waves, Cim, £8ong, =0 for TM waves .
Mz POz
With (2.71) this can be rewritten as
b % =0 for TE waves, Cim; —Con, =0 for TM waves. (2.100)
N ng

where n; represents either np; or ng,, according to which one of the reflected or incident waves exists.

Case ]: TE waves

With (2.71) and (2.72) the first condition (2.100) transforms into
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k%c%f e k%c%2
(kam) klz—k%(l—”?) (kan)

where by (2.64) k{ = wy.

Therefore
2.2 2
P—ffkl _k”(l;z”’) or ——7"12_"% =ﬁ1;— (2.101)
H2 (k2”z) (kZ”z) H2

Provided p; # 12, the condition (2.101) determines (kanz)2. The branch of kzn, is then chosen such as to
satisfy the first equation (2.100); from (2.74) n, is then interpreted as being ng; if Im (k2nz) < 0 or
Re (k2n;) > 0 when Im(k2n,) = 0, and being ny; if Im (kon,) > 0 or Re (k2nz) < 0 when Im (kon,) = 0.

Case 2: TM waves

With (2.71) and (2.72) the second condition (2.100) transforms into
¢ 2 82 2 2 & 2
;lf(klnlz) ‘;lf[kl kz(l " )]— Z‘%’(kZ’lz)
where by (2.64) {/k = j/(o+jwe).
Therefore

2 2 . 2
ki — k3 - (01 + 10351) -1 (2.102)

2 . 2
(kyny) (67 + jowey)

Provided (01 + jo€1) # (07 + jwey), the condition (2.102) determines (kanz)2. The branch of k2n, is then
chosen such as to satisfy the second equation (2.100); following the same procedure as above, n;, is then
interpreted as being either ng, or ny,.

When p = pp, the wave is a TM wave; Eq. (2.47) then converts (2.102) into

- O1tjee
Oy + joEy

1
._2_ 1
Ny
If n; is np,, the wave is incident from z = —oo; the particular value of ng, determines an incidence

angle (Brewster angle, real or complex) for which the reflected wave vanishes. When both media are
lossless and p; = i, using (2.96) it is easy to see that (2.102) yields

tan%0y = -1 (2.103)
€

It should be noticed that when both media are lossless, by (2.64) {1, {3 are real and positive; from (2.100)
and (2.73), (2.74) it appears that n, must be ng,.

If n; is ny; , by the previous remark one at least of the two media is lossy; from (2.101) or (2.102)
kany, is complex, as is also k1n1; by (2.71). There is no incident wave: both reflected and transmitted
waves propagate along the interface and decay exponentially on both sides along the normal to the interface:
they form what is called a surface wave ([6], p. 516; [15], p. 697).

Transmitted wave inside a good conductor

In Fig. 2.4, we suppose that 62 = 0; 6 is considered to be given by (2.18) in order to include the
case of very high frequencies. From (2.47) we then have
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k2 = W4/ExH9 kl = \/—j(l)ul[ 9 + j(DEl) with Im(kl)s 0 (2.104)
1

1+ jot
In (2.104) and in the following, o) represents the D.C. conductivity.

Orders of magnitude. For copper at room temperature, 61 = 5.8 x 107 Q-1 m-1, 1) = 2.4 x 10-14;

we take €; = g9 because we are neglecting the effects of the bound electrons in the metal ([7], p- 32-10).
Using (2.18) we can write

c.l + jogy = jCOSon2 hence k= \/cozeoplnz (2.105)
1+ jml
where
2
n2 = _ﬂ_/EO— +1 and ot = ((DPT) (2.106)
jou (1+ jor) £
Therefore

(0,7) =16:10°  @,1=400 fp=(;—;=2.6-1015Hz (Ap=0.115 pm)

We define a critical frequency f; such that

0:T=1 fc=22);c=2—11n=6.6‘1012 Hz (A, =45pm)

We have to consider three frequency ranges for which (2.106) and (2.105) take the following
approximate forms:

1) when
f<f., o<1,

2 C1 O, -
nE——qtl=s—— ki = +/— jOR,0; (2.107)
Jjoeg Jjoeg

because at the upper frequency f,, from (2.106) the modulus of the first term of n2 s still ((op‘c)2/\/2 =

1.13-10°. This means that in this frequency range (which includes the microwave range), the displacement
current in the metal is completely negligible with respect to the conduction current.

2) when

fc<f<fp, 1<(m<(op1:,
2 o 2_ 2
n =1-—;)% . k= ((o —(op)sopo (2.108)

-1
The fields are attenuated exponentially in the metal, with a decay length of the order of (m "2?80“02 =
¢/®p = 18 nm. In copper at room temperature, the mean free path of conduction electrons is 42 nm ([18],
p. 2%8) which is larger than the skin depth; in that case the local form (2.17) of Ohm's law is no longer
valid, and the skin effect becomes anomalous ([12], p. 308; [18], p. 308). This frequency range is also
the range where resonances of the bound electrons show upineg;.

3) when f>f, (i.e. A < 115 nm), Eq. (2.108) still applies but now ® > @p and & is real: the metal
becomes transparent. When the wavelength ultimately becomes comparable with the mesh size of the
crystal lattice, the metal can no longer be considered as a continuous medium; this is the frequency range
of X-rays, which is dominated by diffraction phenomena.
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Coming back to the microwave range, we rewrite (2.107) as

ki = =jomo; = [sen(w)- j] 'm—";lf’—l or jky =[1+ jsgn(@)] '91*—;& (2.109)
From (2.47) we have
B ok Wy  Jj®EQ € k : |cole 18
2= T2 02273 g 12 0L fy 1070 << (2.110)
ki —Jjoo; Oy EoHy ky o1
the last figure being for copper at 20° C.
Along z, the propagation constant of the transmitted wave is, with (2.71) and (2.73):
Jhimz = jJk —k%(l— ”(%z) = jky 2111
Whatever is ng,, the transmitted wave in the conductor varies as
, Tor 1+ @)
- jk2 ~[1+) sgn(w)] (ML;—GI z2=e 8
where
_ |2 is the skin depth. 2.112)
lolp103
For copper at 20 °C, & = 66.09 pum [fmuz}~172.
f S0 Hz 1kHz 1 MHz 1 GHz 100 GHz
% 9.35 mm 2.09 mm 66.1 um 2.09 pm 0.21 pm
— - — -5 -4
bl_ o 1 692107 | 300107 | 097910° | 3.0010 3.09-10
kl g
From (2.58)
;il'E.l =0 or nlelx+n1yE1y+nlelz =0
where by (2.70) and (2.73)
ky ) L=
my=-2ng, , my=-2ng, , m,=1, ie A=l (2.113)
ky ky

Therefore IE1,l << [E1, or IEyyl; the same applies for 1711. This means that inside a good conductor, the

fields are almost parallel to the conductor surface.

Surface impedance of a good conductor

Because nj; = 1, the surface impedances (2.93) and (2.95) are practically the same for both TE and

TM transmitted waves. Therefore, at the surface of the metal, the boundary condition (2.93):
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E, = Z[A, x1, )=z, A, x ] (2.114)

applies with the same value Zg;={; for any wave polarization; 7= Tz is a unit vector on the inward
normal to the metal surface.

From (2.64) and (2.110), the surface impedance of the metal is thus

0] . 0
Z;=( = JJ—G-HL =1+ sgn(w)]R; where Ry = \/l—lEl : (2.115)

201
ZS = &1. 1_0_)8_1 , lZS] << ﬁ .
&Yy 61 S/ 51

Using (2.63), (2.113) and (2.115) we see that inside the metal

—£ — V<<l (2.116)
(LY S o1

Joule power per unit area of the metallic surface

It is given by the inward flux of the Poynting vector into the metal surface:
I =21 =
B = RC{E[E, xH, ] 12}
Using (2.114) this becomes
P =Red~z,|(A, xT,)x A ]-1, } = Red 2 Z )AL,
2 2

hence

A =%Rs)1?;|2 (2.117)

where R [in Q] is the surface resistance of the metal.

oy _ 1
R = |——— = —
s \/;201 (516

The last expression is the resistance of a metal sheet with thickness 6.

From (2.115) and (2.112) it reads

For copper at 20 °C,

Ry =0.2609 mQfy,]"> =3.690 mQ ar 200 MHz
~8250 mQ at 1 GHz
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2.5 Applications of the complex Poynting vector

In isotropic media where & =1 = 0 and at frequencies where dispersion is negligible, (2.32) reduces
to

~div [Exﬁ*]= E-f*—al[E~s*E'*+I?*-uH]+ jml[—E-s*E*+H*-uH]
Remembering (2.6) and (2.11): €*=¢'+je", p=p' - ju", this relation can be rearranged as
E-J*+ 9)2—1[3’15‘!2 +p"|ﬁ|2] - %[e'|§|2 +u’|}7|2j|
+ j%Ku%%u“] Iﬁlz - [s'+g—lle"] lEi{' (2.118)

When dispersion is negligible, the frequency is far from regions of anomalous dispersion; therefore

—div %[Exﬁ*]:%

Wi<<w  Fl<<e

Moreover, we shall always assume that oy << l@ql, so that the last term in (2.118) is well approximated by
W (52 =12
17(“ A" -] )

Using (2.36) and (2.37), the integration of (2.118) over a volume V' bounded by a closed surface S yields

lra = 0.2 - .
—§E[Ex H *]dS = JZE-T*QV + Poygieresis = 204 (W + W) + 2001 (W = We) (2.119)
hw_/ h—,—_l
Inward flux of the complex Poynting vector Complex power
absorbed byf

In the presence of a current generator, in (2.119)
J=cE+J¢ (2.120)

where 6 E is a conduction current and J € is an impressed current which, when oppositely directed to E,
represents a power generator. Then

o -2 I - -
j% -J*dV=j—;-<SIEI dV+j%E-J"dV=P+j%E-Je*dV (2.121)

P is the Joule power dissipated in V; the opposite of the second term is the complex power produced in V
by impressed currents.

Example 1: Cavity excited by a transmission line, with no impressed currents in the cavity.

If the surface S contains a cross-section of the transmission line and surrounds the cavity walls at a
distance of several skin depths, the inward flux of the complex Poynting vector differs from zero only in
the cross-section of the line, and (2.119) becomes

%w* = P+2j0(W,, ~ W,) (2.122)

where P includes the power dissipated inside the cavity (by conduction and by hysteresis) and in the cavity
walls; we have taken o) = 0 because the RF generator maintains the field level constant.
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Fig. 2.5 A transmission line coupled to a cavity

The input impedance seen at S is

Rex=L- 2, 4jpin-Ve (2.123)
I ]
whereas the input admittance is
I 2P W, -~ W,
G+jB=—= - 4jo—B—rt (2.124)
vovE VP

Equations (2.123) and (2.124) give an interpretation of the reactance X or the susceptance B in terms of
(Wi —Wo).

Example 2: Closed metallic cavity. Imaginary frequency shift due to power losses

If we now consider the cavity to be completely closed, the inward flux of the complex Poynting
vector is zero in the metal, at some djstance from the cavity walls. Fields can be maintained inside the
cavity by impressed volume currents J¢; this is the basis for excitation of cavities by electric currents (see
Section 6). Without impressed volume currents in the cavity the fields are damped, and (2.119) becomes

0= P —204(W, + W, ) +2 jay (W, — W) (2.125)

Equating real and imaginary parts, we obtain

P 1
200 =0 || W= W = (W + W) (2.126)

where P is the total power dissipated inside the cavity and in the cavity walls; W = W, + Wy, is the total
electromagnetic energy stored inside the cavity and in the cavity walls.

This situation occurs when the fields oscillate at well defined eigenfrequencies, which are the

resonances of the cavity. The ratio P/W is independent of the field level. It defines the quality factor Q of
the cavity at a particular resonance through the relation

o

L 2.127)
0 W

so that
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oy = 21l (2.128)

The complex frequency (2.27) reads

(2.129)

Let us now apply (2.119) by taking the surface S to be the inside surface of the cavity walls:

ir= = = ) ) .
~Fravity su,fm-z-[E X A" |4 = Peayity = 200 (W + Wi )y i + 2501 (Wi = o) (2.130)

cavity cavity
where Pcavity is the power dissipated inside the cavity.

Applying the boundary condition {2.114) at the surface of the cavity we obtain
[ExA')T,=[ExA]) 1= 2)a
where Z; is the surface impedance of the métal; from (2.115)
Zy =[1+ sgn(w;)]R; .

Therefore the flux of the complex Poynting vector going into the metallic walls is

1 1

o - . 1 _1~12
f cavity surface E[E X H*] dS = §cavity surface '2_ZS|HI lzds = [1 + Sgn((")l )] §cavity surface RSIHfI ds

2
=[1+j sgn()]- Puan (2.131)

because the real part of this flux is the power dissipated in the cavity walls. We may now rewrite (2.130)
as

0=[1+ sgn(e))Puay + Peavity = 200(We + Win) yiry + 2J01(Won = We) iy
Subtracting from (2.125) yields
0~ sgn(@)Pyay — 201(W,+ W), o + 2J01 (W = Wo) (2.132)
The imaginary part yields
Poatt = 2001 = We) oy (2.133)

In this relation the term W, is not significant because the derivation of (2.132) is based on the approximate
surface impedance (2.115), which implies that in a metal, as shown by (2.116), W, is neglected with
respect to Wp,.

The real term in (2.132) can thus as well be written as 20t1(W,; — Wedwall. Using (2.133) and
(2.128) this reads

1
lg—ilf’wau =‘2‘Q'Pwall :

It is thus very small with respect to the first term in (2.132) and should be neglected.

32



Real frequency shift due to the penetration of the fields in the cavity walls

By analogy with (2.127), we define quality factors O, Qg related to the losses in the walls and
inside the cavity by

o _ Buay g ] ey (2.134)
Qw  Wol Qs Woul
so that
i1, 1 (2.135)
Q Qw Qd

When the losses inside the cavity are due to the conductivity ¢ and the hysteresis of a uniform
dielectric with permittivity €, using (2.121), (2.37), (2.36) and (2.126) we simply have

: j(l 0|E|2 + ﬂz»:"|17?iz)dv )
12 2 - Stme (2.136)
Q4 ol %s’|§f dv joJe”

From (2.126) we have taken Wi = 2W,.

In the expression (2.134) of 1/Qy, Pwal is the real part of the flux (2.131) of the complex Poynting
vector going into the metallic walls; it is proportional to the surface resistance Rs. On the other hand, the
boundary condition (2.114) involves the surface impedance Zs, which entails an imaginary part (i.. a
reactive part) in the flux (2.131). A complete treatment ([12], p. 360) shows that in (2.135), the term 1/Qy
is proportional to Z, which means that it should be multiplied by [1 + j sgn (©1)]. In (2.129), 1/Q should
thus be replaced by

1 _l+jsgn(og) 1

b (2.137)
Qcomplex Ow Qu
yielding
2_ o2 |7, 1580(on)-1 Jsgn(‘”l)} (2.138)
w WH [ + 0., + Qd

Since the reactive part of Z; produces a real frequency shift, we had to replace o in (2.129) by some .
From (2.138) oy is the resonant frequency of the same cavity with perfectly conducting walls and lossless
dielectric; as such it is a real quantity. Comparing (2.138) to (2.129) we see that

-1
o? = 03 {1—-—1-}@3 {1+L} (2.139)

The penetration of the fields into the cavity walls due to the skin effect always reduces the resonant
frequency computed for the cavity with perfectly conducting walls. As shown by (2.139) the correct
frequency shift is given by Q,, ; it will not be obtained correctly be assuming that the walls of the cavity
recede uniformly in all directions by a distance 8.

Relation between the actual complex frequency and the frequency of the cavity with perfectly conducting
walls and lossless dielectric

It is obtained from (2.138), which we write as
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.2 [1 , 1-j sgnRe(@) _ j sgn Re(w))=m(2) (2.140)
Qw Qd

With (2.135) this can also be rewritten as

m2[1+-Q1-—L§2QB—°L‘”—))=m5 (2.141)

Let us remember that @ is the real frequency of the cavity with perfectly conducting walls and lossless
dielectric. The correction factor in (2.140) will appear again in the theory of lossy waveguides and lossy
resonant cavities (see Eq. (6.67) in section 6).

34



3. WAVEGUIDES
3.1 Monochromatic waves along cylindrical conductors with arbitrary cross section

The conductors are parallel to Oz. All megia are supposed to be reciprocal, isotropic and uniform in
space. Helmholtz's equations read (with J =6E, p=0):

AE+k*E=0 with div E=0 3.1)
AH+k*H=0 with div H=0
where
A = grad div - curl curl
aZ
A=A +— 3.2
4 322 (3.2)
k? = —jop(c + joe)  with Im(k) <0 . (3.3)
Ifo=0,
2 2 o’
=0 €u=?—€,u, (3.4)
where
£ H
£, =— , =
r 80 u'f “,0

Because of the form (3.2) of the Laplacian operator, Helmholtz's equations admit of solutions e*¥ in z.

By using Eq. (1.11) with z instead of ¢, the wave dependence on z can be represented as a linear
superposition of complex exponential waves. In the following, we therefore consider only waves of the
type

E(x,y)- e/ Ghere y=a +jB, a=0
and we factorize the complete exponential (in ¢ and z) out of the equations.

Remark: When y =0, the two independent solutions e~ and e¥? coalesce into a single one (a constant);
a second independent solution si then obtained by taking

yli—rﬁ)_ %(c'w - ew) =z .

For E,, H; Helmholtz's equations reduce to:
AE,+k*E, =0
where kg = k2 +'Yz . (35)
A H,+kXH, =0

3.2 Equations for the transverse components of the fields

With Tz representing a unit vector along Oz, first observe that
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curl £, = _%Ezz =yE, cullyE| =—%=—E,
hence curl () ) =[vE, x1,] (3.6)
whereas
curl(E, 1, ) = [grad E, xT,|= [grad, E, x T ]
or

curl | (E, T,)=grad  E, xT,] . (3.7

Similar relations apply for 4. Therefore,

cmllE=[(yEL+gradlEz)xTz] or [szcurl_LE]=yE_L+grad_LEz

(3.8)
curl A = [(yfI_L +graleZ) xTz] or [TZ xcurlLH'] =yH, +grad  H, .
From Maxwell's equations (2.1) and the constitutive relations (2.5), (2.10) we then obtain:
vEL - jou[H, x1,) = —grad | E, (3.9)
~(o+ joe)E,| +y[f1l X Tz] = —[gralez X TZ]
This system can be solved for the transverse components of the fields, yielding
- 0 -
E =-L grad E, - Tl [grad H, xT,
ke ke (3.10)

- o+ joe =
A= ké |erad, E, x lz]—%grad_LHz
(o

c

With Maxwell's curl equations, the conditions div E=0,divH =0 are automatically satisfied. They
read

div E| =vE, , div H, =vH, . (3.11)
This can be verified at once from (3.10), by using (3.5) and the relations
div [grad | E, x1,]=0,  div [grad | H, x T,]=0

which are direct consequences of (3.7).

3.3 Transverse deflecting force
The transverse deflecting force for particles with unit charge and velocity Vv = szis
fL=El+[Vx§]=El + 4 ju)u[flerll] .
jo

Using the first equation of (3.9), this becomes
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- \YJ jo =
F,=—/\|~—-vI\E, —grad | E, | .
L jm[(v Y) 1 —grad zj|

Putting
h=0®/v (3.12)
where v is considered to be independent of z, this equation may be written as

-

FLejhz = ._V_[

3= .
o —(Ele"”)—gradLEz'cﬂ‘z} (3.13)

o0z

in which form it no longer contains y; therefore it is valid for any variation of fields along z.

When v depends on z, just replace e/ by ejoldz/v This phase factor accounts for the fact that the
fields oscillate as e/®, where

=1ty + j—(-i-z-
0Ty
is the time when the particle passes at position z.
3.3.1 Panofsky-Wenzel Theorem
L . L o L .
L aJhz E _ (g ,jhe _ . wJhz
j(t)E[)F_LC » = [Ele ]0 (j)grad_LEz e’"“dz (3.14)

N .
Transverse momentum  Vanishes when

gained by unit charge  E1(0)=Ey (4)=0

This relation shows that when integrated between two positions where E | is negligible, the transverse
momentum transferred to the charge only depends on grad; E,. In particular, there is no transverse kick
to the particle when £, = 0.

The relation (3.14) applies at a given frequency. It describes a mathematical equivalence between the
total transverse momentum gained by a unit charge and an integral over grad ; E;; but the actual deflecting
force is given by (3.13). In particular, if (3.14) vanishes, the total transverse kick given by the
electromagnetic field to the particle is zero; but at some z the deflecting force may be different from zero
and can induce synchrotron radiation.

Example: Consider a relativistic particle passing between two parallel plates of length £ along z and
infinitely wide along x.

yi
\ /x 1
|
! ’/_ - _.E_ _H_ oy Fig. 3.1 A TEM wave between
- —6{ B J‘? z two parallel plates

The plates guide a TEM standing wave along z:
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E,=Egoske  h=2~2-¢
H,=j —E—O—sinkz Co is the impedance of free space .

Co
1) If we neglect the fringing fields at both ends of the plates, we are left with the first term of (3.14):

E lcf"z]f) =1, Ey(0)- ™ - E,(0)| = Eo1, [coskt -/ - 1]
= EOTych[coskl—e_jM] = EOTycjhl -j sin R since h=k .

2)  If we integrate from —ee to +oo we are left with the second term of (3.14):

+o0 .
— [grad | E,-e™dz 0

because of the fringing fields near z=0and z = £.

3.4 Classification of waves

Once the longitudinal fields E;, H, are known, the transverse fields can be obtained from (3.10).
We must distinguish two cases.

a) casek2=0
With (3.5), Y=jk,ie. B=k wheno =0.

Such waves are synchronous with particles travelling along z with the velocity of light. For the transverse
fields to stay finite in (3.10), we must have

grad | E, = ~{[grad | H, x T, (3.15)
where = L% wave impedance of the medium (3.16)
O+ jOE
From (3.9),
Lo 211
E| ={[A,xT,]- Egad_LEz (3.17)

With (3.15) there are two possibilities:
1) grad,E, #0 with grad | H, =0

Since both E, and H, differ from zero, this is a hybrid HE or EH wave. Such waves are used to
deflect ultra-relativistic particles in RF separators [19]. They describe the particular space-harmonic which
is synchronous with the beam in the deflecting mode of a periodically loaded (e.g. disk-loaded)
waveguide.

2) gad E, =0 with grad H, =0

If & # 0, from (3.17)
E ={H, x1,] (3.18)

This is the case when E; = Cy withH,=C>.
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Waves with E; =C) # 0, H, =0 are used to accelerate ultra-relativistic particles. They describe the

particular space-harmonic which is synchronous with the beam in the accelerating mode of a periodically
loaded waveguide.

Fields with E; =0, H, = C # 0 can exist for & = 0 in metallic pipes. They are the solenoidal
uniform magnetic field produced by azimuthal D.C. currents in the pipe walls.

Waves with E; =0, H, = 0 are TEM (transverse electromagnetic) waves, satisfying (3.18). Since
E; =0, a pure TEM wave does not accelerate nor deflect charged particles.

For TEM waves, curl, E) =curl,E=—jop H,=0
(3.192)
and, from (3.11): div E; =y E,=0.
Slrmlarly Curlz HL =Curlzﬁ = (O'+ j(l)s) Ez =0 (319b)
div H; =y H,=0 .
b) casek2#0
From (3.10) the transverse fields are obtained by superposition of two kinds of waves:
1. When E; = 0: TE (transverse electric) or H (because H, # 0) wave.
From (3.9),
E = ]O)TH[H | X TZ] Zoy = mTu(wave impedance) (3.20)
For H waves,
curl,E| =—jop H, 20
R (3.219)
div E_L=Y Ez =0 .
Similarly
curl,H, =(0+ jwe) E, =0
- 3.21b
div H.L =9 HZ #0 . ( )
2. When H, =0: TM (transverse magnetic) or E (because E, # 0) wave.
From (3.9),
E =1 (A, x1,] Z,p = (3.22)
O+ joe G+ jOE
For E waves,
curl,E, =—jop H,=0
" 3.23a
div E, =y E, #0 . ( )
Similarly .
curl,H, =(0+ jwe) E; #0
(3.23b)

div H =y H,=0.
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Remark: The classification of waves according to the conditions (3.19), (3.21) or (3.23) in two
dimensions is similar to the classification of modes as solenoidal or irrotational in a resonant cavity in three
dimensions (see Section 6.2).

Hybrid waves

In a smooth waveguide containing a single homogeneous and isotropic dielectric, where both metal
and dielectric are lossless, the most general field may be considered as a superposition of £ and H waves;
moreover these waves can be excited independently (see Section 3.6).

If one of the above conditions is not fulfilled, i.e. if
1)  the waveguide is not smooth, but it is periodically loaded (see Section 5);

2)  the cross-section of the waveguide contains several isotropic dielectrics;
3)  the waveguide contains an anisotropic dielectric (as a ferrite);

4)  either the metal or the dielectric is lossy;

then all six components of the electromagnetic field are present in the waveguide. This means that a wave
is no longer E or H, but it is a mixture of E and H called hybrid wave.

The real guide can be reduced to the above ideal guide by continuous variation of one or more
parameters (for example, the periodic loading can be made vanishingly small, the dielectric constant of a
second dielectric present in the guide can be made very close to €, ...). By such a transformation the
original hybrid wave will be reduced to one of the E or H wave of the ideal guide. If, by continuous
transformation, the hybrid wave is reduced to an H (or E) wave of the ideal guide, it is called an HE (or
EH) wave; but this limiting procedure does not always yield consistent results ([19], p. 211).

There is one important exception 1o the above rule for hybrid waves. If the guide has rotational
symmetry about its axis, i.e. if it is a circular guide, and if the fields have also rotational symmetry about
the axis, then the waves are still pure E or pure H waves.

Since in a circular guide, the fields vary as cos m@ or sin m¢, this means that waves with m =0 are
E or H waves; waves with m # 0 are EH or HE waves in any real guide.

The most important modes for beam dynamics are m = 0: longitudinal or accelerating modes; and
m=1: transverse or deflecting modes.

3.5 Surface impedance at the boundary of a medium

When the boundary conditions at the surface of a medium are expressed by
E, =z[A, x7] (3.24)
where I-::,,ﬁ‘ are the field components tangent to the surface whilst 7 is a unit vector on the normal to the
surface pointing towards the medium, then Z; is called the surface impedance at the boundary of the

medium.

Exgmple: If the medium is a metal with conductivity G,

Zs =Comatar = oiwj“ms =[1+/ sgn (0)] %=[l+j sgn (w)]R; (3.25)

where Rs = 1/(69) is the surface resistance of the metal, 8 being the skin depth.

It should be remembered that the boundary condition (3.24) on a metallic surface is based on the
approximation
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=—<< 1 in a metal

|Zs| <<\/% :

The boundary condition (3.24) also assumes that the skin depth & is small with respect to the thickness of
the metallic surface; therefore it cannot be applied down to zero frequency.

B

which entails

3.6 Waveguides with Zs = 0 (perfect conductors)
Boundary conditions
From (3.9) we have (see Fig. 3.3)

YE; = — jouH, - aa% (3.26)
(0 + joe)E, =—vH, - Q;i . (3.27)
n

On the waveguide walls, the tangential electric field must vanish so that
E;=0, E; =0 on the waveguide walls . (3.28)
Therefore, (3.26) requires that OLH,=0, ie. H,=0 (3.29)

as long as @ # 0. When @ = 0, the boundary conditions for H no longer take a simple form. In what
follows we restrict our study to cases where (3.29) still applies; this is the case, for example, when the
waveguide walls are superconductors. From (3.29) and (3.27) we then obtain the boundary conditions
for the magnetic field:

H,=0, aai =0 on the waveguide walls. (3.30)
n

3.6.1 Guides with external field

The cross section of the guide extends to infinity. It can be shown that the only possible waves are
TEM waves with N
Y I,=0.

n=1

This condition keeps the power flux of the wave finite. In particular, it prevents the propagation of waves
along a single, perfectly conducting wire.
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Fig. 3.2. N (=3) parallel,
infinitely long conductors
l3 == 7 in open space

\

From (3.19a), curl,E, =0 divE, =0

Therefore E L=-grad;V with A V=0.

This reduces to an electrostatic problem in the transverse plane; the magnetic field can then be obtained
from (3.18).

Examples: Lecher line (N = 2); polyphase lines (N > 2).

3.6.2 Guides with internal field

&

//?\’

The cross section S of the guide is bounded by metallic walls of finite extent.

\

Fig. 3.3 Cross section of a
waveguide with internal field

Differential equations, from (3.5):

for H wave: A H, +k}H, =0
(3.31)
for E wave: AE, + kCZEz =0
Boundary conditions
From (3.10),



s

_la_E_z. + Jou aHz
k* s kX on
_O+jwedE, Y oH,

" kg os kc2 on’
As long as k” # 0, the boundary conditions

oH,
on

E,=0, =0 on the perimeter 5 (3.32)

entail the other conditions Es= 0, H, = 0. When k? =0, the full set of boundary conditions (3.28),
(3.30) must be imposed.

Since the conditions (3.32) are different for E; and H,, the corresponding eigenvalues k2 are different
for E and H waves, which makes these waves independent solutions of Maxwell's equations. But it is
important to notice that these waves can exist only in smooth, perfectly conducting pipes filled with a
homogeneous isotropic dielectric; in all other cases* the waves are hybrid (E; # 0 and H, # 0).

Multiply the first equation (3.31) by H: and integrate over S:

* OH 2 2 2
ista—;dPIslgfalezl dS+k: [g|H,|"dS =0 (3.33)
—_—

0

hence k? isreal 2 0. A similar equation applies for E,.
Case k? =0

From (3.33), k> = Oimplies grad; H,=0 and grad; E; = 0. Therefgre H;=Cincase of an H
wave; because of the boundary conditions (3.32): E; =0, which means that k> = 0 is not an eigenvalue
for F waves.

Since E; = 0, the first equation of (3.21b) entails
curl, Hl =0  hence I?_L =-grad |y

where the scalar potential y can be multivalued if the cross section of the waveguide is multiply connected;
the boundary condition (3.29) reads

N _g

gy _ . 3.34
™ ons ( )

The second equation of (3.21b) entails
Ajy+vH, =0 inS.

Therefore, since H, is a constant in S,
§a—“’ds+yH,jds=0 .
s an S

Hence: YH,=0 and A y=0 inS. (3.35)

* Except for waves with no azimuthal variation in a circular pipe with finite conductivity; such waves are pure E or H waves.
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If H, # 0, the first condition entails ¥ = 0 hence k = 0. By analogy with (3.33), the second equation
combined with (3.34) entails, if the domain S is simply connected:

grad , y=0 or H =0.
Let us now suppose that k # 0 (i.e. ® # 0). Then, with (3.5), y# 0 and with (3.35),
H,=0.
Therefore the wave is TEM. From (3.19a), curl,E; =0 and div E; =0
hence E 1 =-grad,V with V; = constant on s; (3.36)
and AjV=0 in §. (3.37)

The s5; represent the disconnected parts of the border of S. Equation (3.37) implies

0=fgA,V dS=Z§a—Vds or Yq;=0

i Si an l
where g; represents the charge that the part s; carries per unit length along z.

Equation (3.37) also implies
x dV 2
0=[sV*a,V dS=3V §—ds -[|grad V| dS
iy on M
which entails, if the domain S is simply connected:

grad; V=0 or E =0 .

Therefore a TEM wave cannot exist in a domain S which is simply connected. When the domain is multiply
connected, TEM waves exist because V can take different values V; on the different conductors.

Once E, has been determined by (3.36) and (3.37), H, is obtained from (3.18) as
Hl:—é[E_LXIZ} . (338)
Classification of eigenvalues

1) H;=C # 0is only possible if k© =0 and @ = 0; this case corresponds to a D.C. uniform magnetic

field in the waveguide, which behaves as a solenoid. The fact that @ must be zero is also obvious from the
boundary condition

0:§E: ds=—jwusz as .

2) When S is simply connected (hollow guide), there is a countable infinite set of k> values starting from 0
(with H; = C) for H waves and from a positive value for E waves. Moreover ([20], p. 292),

smallest positive kc2 for H waves < smallest Icc2 for E waves .

The cormresponding eigenfunctions H, or E, form a complete orthogonal system of scalar functions in S.
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3) When S is multiply connected (cable with N conducgors), ¥ = 0 is also possible with (N - 1)
independent TEM waves. The transverse electric field £, is the same as in the (¥ — 1) independent
electrostatic distributions of charges on the N conductors.

Interpretation of the eigenvalues k’
In all cases, from (3.5), -y =k -k

k<k, y=0 evanescent wave
If k>k y=jB propagating wave
k=k. +vy=0 cut-off frequency

Density of eigenvalues (Weyl's theorem)

The number N(kC2) of modes which have a cut-off frequency smaller than k. can be evaluated by an
asymptotic formula valid for large k.. This formula was first derived by H. Weyl ([21], p. 59).

Let S be the area, and £ be the perimeter of the waveguide cross-section. It can be shown that the

distribution of eigenvalues kc2 of the scalar Helmholtz equation (3.31) combined with the boundary
conditions (3.32) satisfies the following relations:

2
for H modes: N(kg)z%_g+_§d
T
2 K2kt
for E modes: N(kc)zj_n_fn

3.7 Waveguides with Zg # 0

They may guide waves having an exponential decay along the normal external to the surface of the
guide. These waves are called surface waves ([15], p. 697; [20], p. 377).

Examples: Sommerfeld wave on a single resistive wire (E wave); wave along a dielectric coating; wave
outside an optical fibre.

3.8 Dispersion in waveguides

W

Fig. 3.4 Dispersion diagram
for a waveguide

dw .
slopesvg=—,  (group velocity at P)
%3 ) T

slope=v,= v (phase velocity at P)
P B

p
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For alossless waveguide, the dispersion relation is given by (3.5):

K=ki+p?. (339)

If the dielectric has zero conductivity, (3.4) applies and

v, >cen, )
wdo 1 kdk 1
VL, =

2V, = =— =—  where (3.40)
d
Bdp enpdf en »
v, <c(en,)

When vg < vp, the dispersion is called normal. If the dielectric has ¢ # 0, Vg > Vp and the dispersion is
anomalous.

The energy velocity v, is defined by P = v, W1 where P is the power flux of a wave travelling along
the guide, and W is the energy stored per unit length of the guide in the travelling wave.

For a lossless waveguide, we shall prove in (3.65) that
1

Vv, =— (3.41)
ey

hence from (3.40): Ve =V, .
It should be emphasized that this equality is tied to the absence of losses.

For a guide with finite conductivity or with dielectric losses y= o + jB, P = P, €-2% for a travelling
wave, and Py is the power lost per unit length of the guide:

P, =—£=20.P=2(11)¢Wl ‘
dz

As in (2.127), the quality factor Q(w) of the guide in the passband is defined by:

o B
lal = Wll (3.42)
where we take o as real. Therefore
20.= _I(:i . (3_43)
Ve

Dispersion relation

For a waveguide with perfectly conducting walls and lossless dielectric (¢ =0, €" = 0), the
dispersion relation is simply (3.5):

o)i e = kczo —-y? (3.44)

where k2 is obtained from Helmholtz's equations combined with the boundary conditions (3.32).

In order to take wall losses and dielectric losses (¢ # 0 or £” # 0) into account, assuming they are

small, we simply replace in (3.44) the frequency @, of the lossless case by the expression (2.141); this
yields the dispersion relation
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mzeu(l + Qi - i—si‘y] =k2 -y where y=a+B. (3.45)
W

Equating the imaginary parts we obtain

208 = mzeu%l—(—(&) (3.46)
0
Since P = 0/v,, the comparison of (3.46) with (3.43) yields in the passband:
V0, = L 347
eVp ep .

which is identical to (3.41) obtained for a lossless waveguide.

Remark: In the stopband, the dispersion relation (3.45) no longer applies if Q,, and Q are still defined
by (3.42). Nevertheless, (3.45) still applies if (2.141) is used as a definition for Q,, and Q. Obviously,
such a definition of Q is consistent with the classical definitions (2.127), (2.134) in the passband; it has the
advantage of providing an analytic continuation of the classical definitions in the stopband [22], where it
yields simpler expressions.

For example, from (3.3) and (2.20) a dielectric conductivity o has the effect to replace k% = w2ep

m2e’u(l - or me ) = (oze’u(l - M]
we - Q

by

where the last expression follows from (2.140); therefore, with the new definition,

1 _oc+we
Qs ol

(3.48)

The definition (3.48) yields the same result as (2.136), which however used the equality W, = W,. The
new definition of Qg extends the validity of (2.136) to cases where W, # We; such a simple relation (3.48)
would not be obtained with the classical definition (2.134) in the stopband, because it would require Wy, =
W, which to first order is fulfilled in the passband but not in the stopband, as shown later by Eg. (3.62).

Similarly [22], one may consider that imperfectly conducting walls produce a complex factor
Ow complex such that

mz[l— j sgn (o) _jsgn UD)}: WF . (3.49)

Ow complex Qd

If we compare with (2.140) we obtain

1 _-+j sgn(w)
Qw complex Ow

which is natural because 1/Qw complex is proportional to the wall impedance Zs = [1 + j sgn(@)]R;. In fact,
the generalized definition of Q leadps to ([22], p. 303)

lof _ §R(@)A,(v)- Hy(-y)ds (3.50)
Qp  [suH(y)-H(-Y)dS

where H(y) , H(~Y) represent the magnetic fields of waves travelling in the positive and in the negative z-
direction along the lossy waveguide. From Eqs. (4.8) and (4.10) it will be seen that
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hence

H(y)- A(-y)~[-H} + HZ
which should be used in (3.50)

A first approximation is obtained when in (3.50), A(y) , H(-y) are replaced by the fields in a
lossless waveguide; then within the passband —y=y* and one may take

H(—y)=CH(y)* where C isaconstant,
so that (3.50) then reduces to the classical definition (2.134).
3.9 Longitudinal and transverse energy densities

From (3.8) and Maxwell's equations (2.1) we derived (3.9), which we here rewrite in its complex
conjugate form (assuming €, W, ® to be real quantities):

{ v* Ej_ + jmp[ﬁl X Tz] = —grad_LE‘:

~(o - jwe)E] +y*[f{j_ X Tz] = —[grad_,_H: X Tz] (3-51)
By taking the alternate form of the equations in (3.8) one would obtain
y[ELxfz]+j(oul7l=—[gradlsz-fz] (3.52)
(c+jo)s)[Elxlz]+yI-7l=—gralez . '

Let us dot multiply (3.51) respectively by £, and E, :
y'elfllz + joep 1, -[E'_L xfli]= -¢E| -grad | E, =E, div (€€, )-div (EZEE'J_)
~(o- joe)E L[ + 4T, [EL x T )= {1, x By |-grad 1} = H} div (T, x B, )~ div (H3[LxEL))
At this point we assume that €, i do not vary in space. Then, from (3.11),
div (e£, ) = yeE,
whereas div (I, xE; )= -1, -curl E, = —curl, E= jou H, .
Therefore the previous equations become

ELf' - wele,f =~ joen [E x8°]1, - aiv (EleE,)

TE (3.53)

= 2. R SR
(o-joe)E,| + joplH,] = y'[E x A", +div (A;]T, x 1))
In a similar manner we dot multiply (3.52) respectively by 1?1 and I’LHJ. :
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T, [Ey < B+ jou L[ =T, x 1) grad B, = E, div [T, x AL]-div (E, [T, x A1)

o+ joeuT, [Ey x B[+ i, [ = -] -grad, H, = H, div (wA})~div (H,ui})

But div [_f, X ﬁi] =-1,-cul A =—curl, A =—(c- joe)E,
and from (3.11), div ( uﬁi )= y*p.H: so that the previous equations become
.2 I - =
joulf [+ (0~ joeE,[* =v[ExA"|-T, - div (Ez[lz x Hi]) st
) Y a1 = L SR .
WAL -y W, = (o + joe)u|ExA"] 1, - div (H,uA])

If dispersion, i.e. the variation of € and p with @ is neglected, following (2.36) the time averages of
the transverse and longitudinal energy densities per unit length of the waveguide are defined by:

W= i— felg.[as wr = % [, [as

.1 2 o 2 (3.55)
Wy =7 [elE[ds wr==[ulH[ds
Then
W =W +Wr Wr=W"+W"
W =W +W W, =W/ + W'

W +W, =W+W"

The flux of the complex Poynting vector through the waveguide cross section is separated into real and
imaginary parts as(*)

j%[éxﬁ']-dS':PﬂQ. (3.56)
N

Integrating (3.53) and (3.54) over the waveguide cross section (with €, jt, 6, assumed to be constant)
yields (see Fig. 3.3):

2WE -2 =joen(P+0)  —2fEreE Tds (3.572)
2(% - jco)wf +2jo W=y (P+jQ) —%}H;E Tyds (3.57b)

2jo W+ 2(-:- - jmjw;’ =y (P+jQ) +%§Ezﬁ* T,ds (3.57¢)
2y WP -2y W = (4 joelu(P+jQ) o $HuATds (3.57d)

When the waveguide walls are perfect conductors, all the contour integrals in (3.57) vanish because
of the boundary conditions

(*) In this section, Q is the imaginary part of the complex power flow along the waveguide. Hopefully, there should be no
confusion with the rest of this chapter, where Q always represents a quality factor.
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[ixE]=0  #-H=0.

In this case, by separating real and imaginary parts in (3.57a), (3.57d), (3.57b), (3.57c) we obtain

20(W; - W)= wenQ 2B(WS + W) = wepp
20(W-W)=0uP-wep0  2B(W] + W)= ou0 +wepP
(3.58)
2%Wf=aP+BQ 20(W, - W) =-aQ +pP
22Wi=aP-B0  20(W"-W)=aQ+pP
This set of equations is equivalent to
- 20(Wf - Wf )= wepg 2B(WE + Wy ) = oepp
20w, W, )=opp 2B(W™ - W) =oug
O (11/e e m e ] (3.59)
E(WL+W2)—GP oW™-We)=aQ
~ %(Wf -Wf)=B0Q o(W, -W,)=pP

The eight equations have been linked together in four pairs. The pair which contains (Wf + Wz‘) > 0 implies
that

20B = wpo . (3.60)

With this relation, each pair reduces to a single equation; therefore (3.59) is equivalent to (3.60) and the
following four equations:

{2a(Wf -W)=wepQ 2B W° =P

(W -W*)=aQ (W, —W,)=pBP G.61)
which entail
(1)) ﬁ w o e e
P=—(W -W)=-22W° =—(W"-W°)=—2(W*-W°*) .

Remembering (3.3) and (3.5), it should be noticed that (3.60) is equivalent to

Im(k?) = Im{k? +v%)=0 (3.63)

which confirms that (kf) is real for a waveguide with perfectly conducting walls.

In the particular case where 6 =0, i.e. when the waveguide dielectric is also lossless, we have of = 0.
There are two possibilities:

1) Propagating waves: a = ( (passband)

Then Q=0 and Wm=We=1/2W.The power flow across the waveguide is purely real; it is given by

P=%(WL~WZ)=1>,,(WJ_—WZ) since up=% (3.642)

50



or by

P= —-B——W =v,W hence v, = B . (3.64b)
OEQ WEQ

It follows that
1.0 md o<le_Wi-W
W, +W,

V0, =
€°P en U

<1. (3.65)

It thus appears that the difference between v, and Vp is tied to the existence of longitudinal fields; in
particular v, = Vp for a TEM wave only.

2)  Evanescent waves: [ = 0 (stopband)
Then P =0 and Wi =W,. The power flow across the waveguide is purely reactive; it is given by

®

Q= ;(W" - W) (3.66a)
2a ;. . . 20 m m
or by Q=@(W_ -W, )=—@(WL -wr. (3.66b)

The expression (3.66a) can be obtained directly by applying (2.119), with J =0 and a; = 0, to the volume
enclosed between two cross sections of the waveguide at z and (z + dz).

The relations (3.58) can be generalized to include the case of waveguides containing lossy and
nonreciprocal media [23]. The relation (3.64a) is also valid for dielectric waveguides ([17], p. 43).

3.10 Attenuation of waveguides

We suppose that the attenuation is only due to resistive wall losses. In the passband where « is
small, from (3.62) we may take W, = W,. Using (2.117) and (2.36) in (3.42) we obtain

1 - 12

—¢éR ds
M=__21§ SPT’IZ (3.67)
Ow :Z-IsulHl ds

where the upper integral is taken on the perimeter of the waveguide and the lower integral is taken over the
cross-section (see Fig. 3.3). These integrals are computed for a lossles waveguide.

Using (3.4) and (3.5), the attenuation is then computed from (3.46) as

jof wen _ fo| _|kien
200=1-+ = (3.68)
ToB Taele

This formula obviously breaks down when k = k; in this case one should compute P from (3.45) and not
from (3.5), which only applies for a lossless waveguide.

H wave

By (3.10) we can express both integrals in (3.67) in terms of H,.
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$IF{ds = §|f7, P as + §1#7, Pas =

Y
_2_
C
With (3.33) and (3.5):

2

12 Y
Al ds =X
Is|A] "kcz

Therefore (3.67) becomes

k2
—~1}§=
lol _rRZ\K J#

a—‘ ds + §|H,*ds

0, it Jg|H, [ ds
or

1 aHz"'ds

— H,["ds—
o_g Rl S i

sl

2 2
) | 2 k 2
fslgrad | H,2ds +[s|A,| ds = ['ZZ + IJJSIHZI ds = =z Js|H,| ds
(o C

k2
k2

This can be rewritten as

lof _

k2
O u{A Bk?l

where
1 |oH, P 2 o, |*
§k2 Os _§|HZI ds 2 ds
s JslH. " ds

are coefficients independent of frequency.

From (3.68) and (3.71) we have

20==-%|1-=% A+B-=S |~

1/2 2 -12
k k,
1- =% A+B=S

(3.69)

(3.70)

3.7

(3.72)

(3.73)

where we have used the l0l1/2 dependence of R; shown in (2.115). It is easy to see that as a function of

frequency, o reaches a minimum when

k> 3(B 9B Y B
=T+l —+1] -—
K 2\4A 4\ A A

From (3.72) we always have

8- —|—§H’|ds >0
A §l aH
k2 os
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Nevertheless, for all waveguide cross-sections where an explicit solution H, can be found, we have the

more stringent inequality B/A > 0. Therefore, since (3.74) is an ever increasing function of B/A, the
minimum of attenuation is reached at a frequency

k2
yv) >3 (3.75)
C

In particular, if A = 0 (which means 0H,/ds = 0 on the waveguide periphery), the minimum of attenuation

recedes to k2 = oo; in that case the attenuation is an ever decreasing function of frequency. This property
makes very attractive the H modes with H, = constant at a given z on the waveguide periphery; such modes
exist as the rotationally symmetrical H,, modes in circular and coaxial waveguides (see later).

E wave

By (3.10) we can express both integrals in (3.67) in terms of E,.

2 2
G Ll 12, |0+ joe| (dE,
fifas=ifes-24] ] o (3.76)
With (3.33):
) 5 2 R
- - G+ jOE 2 G+ joe 2
Js|A as = [g|A [ ds= _k%_ [slerad | E,|"dS = ﬁ k2 [|E,[ s (3.77)
(o (4
Therefore (3.67) becomes
1 |3E, [
W R Zlon ©
——=—+A where A=—f—— (3.78)
A is a coefficient independent of frequency.
From (3.68) and (3.78) we have
20=-X1-%| A (3.79)
¢ k

Comparing with (3.73), we immediately see from (3.74) where B = 0 that the attenuation ¢ reaches a
minimum when

3 (3.80)
%

(s

3.11 Some waveguides of simple shape
3.11.1 Rectangular waveguide

When the cross section of the waveguide is a rectangle of sides a, b (with a 2 b), the Helmholtz
equation is separable in the transverse coordinates x, y.

H waves H,= Hmcos(m—nxjcos(%n y) (3.81)
a
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2 2
kczz(_m_n) +(ﬂ) m, n=0,1, 2, ...
a b

The mode with the lowest cut-off frequency, apart from H, = C (for m = n = Q), is the H;pmode.

From (3.10) we obtain:

E, HM%%COS(-'Z—nx)sm(n; y) H,=H J—m—RSm(mx)cos( :y)

™kt a a
3.82
Ey=-H,, / wﬂsm(m—n x)cos( y} Hy=H,, 72 nt cos(m—Tc x)sm(ﬂ y) (3.82)
kc a a b k b a b
E waves E,= E,,msin(m—Tt x)sin(—nbzt— yj (3.83)
a

2 2
kf=(m) +(ﬁb1£) m o n=1,2, ..
a

The mode with the lowest cut-off frequency is the E;; mode.

3 Ymr (mn \.(nx C+jOEnn . (mm ) (mt )
E, =-E,,—5—cos| —x [sin| — H,=E —sin| —x |cos
x m"kcza (ax)m(by) <« =Emn k2 bsn(axc by
Y . (mn nw G + joe mn mn nw (3.84)
E =-E sin cos| — H,=-E ——cos| —x |sin .
"2 (a) (by) YT a°[a) (by)

Remark: The degeneracy of cutoff frequencies for H and E waves in a rectangular waveguide is removed
when wall losses are taken into account ([12], p. 352; [15], p. 350).

3.11.2 Circular waveguide
When the cross section of the waveguide is a circle of radius a, the Helmholtz equation is again

separable in the transverse coordinates 7, @. In the following, J(z) is the Bessel function of the first kind
of order m and argument z.

H waves H, = HypJ u(kor)cosme  where k@ = jpn, atoot of J,,(k.a)=0 (3.85)

The integer n =0, 1, .. counts the zeros of J'n(x); n = 0 corresponds to kca = 0 when m =0, and to k.a >
0 when m = 0.

2 2
(kca)zz(mz’";lj n2—4"’4+3 m=012. n=012 .

For historical reasons these modes are designated as Hy, n+; when m # 0, although the notation Hp,
would be more logical.

The mode with the lowest cut-off frequency, apart from H,=C (form=0, n=0, k. = 0), is the H;
mode.

E, =Hpy LRI ) (kor)sivm  H, = —Hpy L T (korcosmo

k. k.r k

e m (3.86)
Eq= Hmn-k—fm(kcr)cosm(p Hy = Hm,,;-;——]m(kcr)sinmp

(4 ¢ ™C
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E-waves  E,=Ep,J,(k.r)cosmg where k.a=j, ., ' positiverootof J, (k.a)=0 (3.87)

(k.a)® =(n+-2’"4—1) n2—4—’"4—1 m=0,1,2.  n=121

The mode with the lowest cut-off frequency is the Eg; mode.

G+ jOE m

E,=-E,, —Y—J;,,(kcr)cosm(p H,=-E,, o{ker)sinme
kC kC Cr (3 88)
Eg=Eppt-0 (kr)simg  Hg = ~Epy L2 ) (kor)cosme
ke ker c

Remarks: 1) If m >> n, the fields are concentrated in an annulus near the periphery of the waveguide:
these are called whispering gallery modes.

2) We have assumed an azimuthal variation as cos m¢@ for H, and E,. Whenm 0, we can as
well take sin m¢ which corresponds to the other polarization of the wave. Since both polarizations have the
same cutoff frequency, all modes with m # 0 are doubly degenerate. This degeneracy is due to the
rotational symmetry of the waveguide about the z-axis; it is broken as soon as the rotational symmetry
disappears (for example, in an elliptical waveguide).

3.11.3 Coaxial transmission line

The waveguide cross section is the space between two coaxial circular cylinders of radii a, b (with
a < b). Since this domain is multiply connected with N = 2 different conductors, the waveguide can
support (N — 1 =1) TEM wave.

The Helmholtz equation is separable in the transverse coordinates 7, @. In the following, Y,(z) is the
Bessel function of the second kind of order m and argument z.

TEM wave

The electrostatic potential V between the cylinders is

V=V,log- with V=0, Vb=volog§. (3.89)
a
v, 1 v,
From (3.36) and (3.38), E, =-—2  Hg= Z15, = (3.90)

The total current on the outer conductor is

2
'2—TCVO and Ii

Iy =—§H¢d5= =0,
g i=1
The characteristic impedance of the line is thus
z.-Y%o=Va_ S0 (3.91)
Ib 2 a

55



H waves

Inlkch)  Ylkeb)

.

J;n (kea) Yn(kea)

Imlker)  Yu(ker)
Y,

mca

cosm@  where =0 (3.92)

R
I
T
E
)
5
nh'
&
|
| S|

2
kf(b—a)2=(nn)2+(4m2+3)(%;—q-) m=0,1,2 .. n=12,.
a

For n = 0 this relation must be replaced by

-1
1(b-a\* 4 b-a\ 4 b—a\®
k2(b+a) =4 21-—( ) — (6 2—1( ) 62 2—11(—) + o
¢(b+a) m[ 3\pra) * 550" )b+a +3.5.7.9( -1,

For historical reasons these modes are designated as Hy, 547 when m # 0, although some authors designate
them with the more logical rotation H,,, ({20], p. 329).

The mode with the lowest cut-off frequency, apart from H, = C (form=0, n =0, k. =0), is the H;;
mode.

E waves
Y, (k.b
E, =E,,,,,|:J"‘(kcr) _Inlkr) cosm@ where Im{keb) Y(kcD) =0 (3.93)
Tmlkea)  Yp(kea) Tm(kea)  Yp(kea)
kX (b-a) =(nx) +(4m2 - 1)(-b—i)2 m=0,1,2,.. n=1 2,.
¢ b+a

The mode with the lowest cut-off frequency is the Ey; mode.

3.11.4 Radial line

my

Fig. 3.5 E wave in aradial line

A radial line is the space between two parallel plates a distance ¢ apart, where an electromagnetic wave
propagates radially (outwards or inwards). The basic waves are the same as in a coaxial guide, except that
in a coaxial guide we have standing waves in the radial direction and travelling waves in the longitudinal
direction, whereas in a radial line we have travelling waves in the radial direction and standing waves in the
longitudinal direction.

In the radial direction, an inward travelling wave is represented by a Hankel function H,(,}) (k,r); an

outward travelling wave is represented by a Hankel function H,(nz) (k,r). These functions are singular at
r=0. Along z, the propagation constant § must take the values
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B="C p=012.. (3.94)
from the boundary conditionsatz =0 andz = £,
Along r, the propagation constant , is then given by (3.5) as

k2 =k?-p? (3.95)
H waves (with respect to the z-axis)

We shall write the fields for a radially outgoing wave; but the formulae are the same for an ingoing
wave.

H,=HH O (kr)cosmg sinPz  n=12. (3.96)

Decomposing sin Bz into two travelling waves, from (3.10) we obtain

E =H,, Jou m H(z)(k r)sinmo sinfz ~ H, = H'”"_l?- H,(,f)'(k,r)cosm(p cosPz

ky kr
E,= H,,,,,jz)—qu) (k,r)cosme sinfz Hy=~H,, E’ km H (2)(k r)sinme cosPz (3.97)
r

E waves (with respect to the z-axis)

E,= E,,I,,HSE )(k,r)cosm(pcosBz n=0,12.. (3.98)
Decomposing cos fz into two travelling waves, from (3.10) we obtain

O+ j0e m ,,(2)

E = -E,,,,,EH,("2 y (k,r)cosme sinfiz H, =-E,,, o (k,r)sinme@ cosBz

k, k, k1
Eg=Epp E = HO(kr)sinmp sinpz ~ H,, = —Em,,"“;c—’“’eyfj)'(k,r)cosmw cospz (3.99)

T I' r

The most important mode is the one with no variation along ¢ (m = 0) and no variation along
z (n=0), i.e. the E5p mode. Since § =0, from (3.95) k= k.

This mode has only two field components:

E,=Epp HO(kr)  Hy=-E, 2 k"”e HY (k) (3.100)

Along r, it is a TEM wave with a wave impedance

E__k HOWw) k. HOWw) 3100
Hy o+joe g gy o+ joe HO(kr)
When kr >> 1,
)
Hy ()
Hfz)(kr)
and
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-—fs———=( by(2.64).

Plots of the first modes in waveguides of simple shape can be found in the literature ({24], p. 59 to
84; [25]).

4. IMPEDANCE TRANSFORMATIONS

4.1 Orthogonality of waveguide modes

Because the cross section of a waveguide is two-dimensional, possible modes (and values for & ) are
characterized by two indices. In the following we use a single letter n or m to represent the full set of

indices.

At a given frequency, the set of all possible (TEM, H and E) modes in a waveguide with a
homogeneous isotropic dielectric and perfectly conducting walls form an orthogonal and complete system,
which can be used as a basis for expanding the most general fields in the waveguide ([26], p. 121).

By using the identity ~ U-AV +grad U-grad V =div (U grad V) 4.1)

it is straightforward to deduce from the Helmholtz equations (3.31) combined with the boundary conditions
(3.32) that, for E waves:

oE

_kczmIEanzmdS +Jgrad | E;y - grad | E,,, dS=$E,, a;m ds=0 4.2)
N S
hence (k2= k) E..E..dS=0 .
N
if kZ‘,, # kg‘,,, , the eigenvalues are said to be non-degenerate, and
JEpE,mdS=0 for nzm . 4.3)

S
If kcz,, = kZ,,,, by taking appropriate lincar combinations of solutions of the Helmholz equation, one can
choose a suitable basis of eigenfunctions E,,, E,, such that (4.3) still holds.

Introducing (4.3) in (4.2) yields

|grad |E,, -grad |E,, dS=0 for n#m. 4.4)
S

With (3.10) this entails

|E,. -E,ds=0, [H,-A,45=0, [[E.xA,]-d5=0, n=m. @4.5)
N N

N
For H waves, E; is replaced by H, in (4.3) and (4.4), whereas (4.5) remains unchanged.

Since the Helmholz equation and the boundary conditions (3.32) are real, the eigenfunctions E;, H,

may be taken as real quantities. From (3.10) it then follows that E L1, Hi, have a constant phase
throughout a cross section S of the waveguide; therefore (4.3) and (4.5) may also be written as
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JE,pEpndS =0 [ HypH,pndS = 0

S S

JE , E|dS=0 [H,, HndS=0 (4.6)
S N

J|E wx Hy|-d5=0 fornzm  (valid with or without *) .

S

By using the identity [grad U x grad V] = curl (U grad V) which entails

jlgrad U x grad V]-d§=§U%—:ds=—§VaU 4.7)

N

it is easy to see that the orthogonality relations (4.6) also remain valid when # is an E wave while m is an H
wave.

Finally, when one of the waves is TEM (in a multiply connected domain), one uses (3.36) to (3.38)
and (3.10) together with the identities (4.1) and (4.7) to prove the validity of (4. 6) in this case also. If n
and m are both TEM waves, they can be chosen to be orthogonal since they correspond to the same

degenerate eigenvalue k* = 0 .

4.2 Reflection at an obstacle

Fig. 4.1 An obstacle in the waveguide atz=10

Wave travelling in the positive z-direction

E* =S AT[E L, + Byl o717

n 4.8)
= ZA;[FIM + Hzniz ]C—Ynz

n
E|p=2Z,|H1,xT,] (4.9)

where Z, is given by (3.20) for an H wave and by (3.22) for an E wave; Z, is simply { for a TEM wave.

Wave travelling in the negative z-direction

By changing the sign of v in (3.10) or by considering the image of E* in a symmetry plane, we may
write

E=3A[EL - EnL ™
n

Lo 1y (4.10)
H™ =S A [-Hin+Hypl Je
n

Consider a wave E* impinging on an obstacle at z= 0. In general, the boundary conditions on the
obstacle require the presence of all possible modes in its vicinity. However, if the frequency is low enough
(lower than the second cut-off frequency), only the mode having the lowest cut-off frequency (dominant
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mode) will propagate away from the obstacle, so that, at some distance, the reflected wave E ~ will
essentially reduce to the dominant mode.

A particular mode is completely determined by the amplitudes of E; or H in the two travelling
waves at some point in the cross section of the waveguide. Having chosen such a point, one may write

. _E
_y Ht=EL
Ef=Ele™™ Z,
@.11)
E[=E;e¥  H7=-EL
ZO

The wave impedance Z, is defined with respect to a direction of propagation, and changes sign with the
latter. The total wave in this particular mode reads

E =Ele ¥ +E "

, 4.12)
H; =_ZL Ele V¥ —Eje?”

(4]

Analogy with transmission lines: VI Z.orZ,

Transverse fields in waveguides: E; H; Z,

Reflection coefficient (of the transverse electric field)

Since in the following we only use the transverse fields, we drop the subscript L. By definition, the
reflection coefficient of the transverse electric field is

£
_E 4.13)
p 7
E; 6o
In particular, Po= —EE =|p,| e/% .

For the transverse magnetic field, the reflection coefficient is (—p).

2az+j(2Bz+0,)

From (4.11), p=p, e2¥ =|p,|¢ (4.14)

Let us remember that since the reflecting obstacle is located at z = 0 (see Fig. 4.1), in (4.14) z is always

negative. Therefore, when o > 0, Ipl decreases toward the RF generator; when & =0, Ipl is independent of
Z.

4.3 Standing waves

At every position z in the waveguide,
E=Et(1+p) H=H*(1-p). (4.15)

If the attenuation is zero, [E*|, IH*| and Ip} do not depend on z. Then, along the waveguide:

Elnge =[E*| (1+Bl)  1Ein =|E*] (110} - 4.16)
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Voltage standing wave ratio (VSWR)

The VSWR is defined as S=|£|"'—‘;2

£l 1 along the waveguide .

If the attenuation is negligible, (4.16) yields

S=1+yp| S-1

1-p| or |p|=:9—+_l '

The voltage standing wave ratio S is thus a measure of Ip!.

4.17)

(4.18)

When Ipi =1, § =oo: this is the case of a pure standing wave with total reflection, where the reflected

wave has the same amplitude as the incident wave.

When p =0, = 1: this is the case of a pure travelling wave, and the waveguide is said to be

matched. From (4.14), this condition is independent of z.

Amplitude variation of E, H along the waveguide

For simplicity's sake we assume that the attenuation « is negligible. From (4.14) and (4.15):

L+ 22+ )= (1)« dpos?{ -+ 82
£ ° ’

2
_fi’lﬂl = 1+lpf" - Zpicos(2Bz + 0,) = (1-Jp))* + 4]p|sin2(ﬁz + 4’70)

|E| is maximum when |H| is minimum, and vice versa (see Fig. 4.2).

|E_| or IH_|
lE*l ] S =
2 [* ~ PRl N g
Y V4 ~ Y4
3 \ V4 A 4
\ p) \ /
\ 7 \\ l4
\ =
™ - \ ! P 2adad N \ ! "-S = 3
RS ’ ~ s
YA , VA /
L
\ \ [}
\ ) —_— —_-S =
“\ 1y )
9 N [ 4
’
’
‘\\\o'l \\\-I,l
[ \ v, com— F
v /! v
’
\ 1 \\’
i e \l’ A 4 " " Y 4 ------oﬁ
0 m -Rz 2T

Fig. 42 Amplitude variation of E and H with z. In the figure,
for S = we have taken ¢, = (i.e. po=-1)

m Fig. 4.3 Variation of (1 £ p) in the complex plane

0 1
,‘p
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Fig. 4.4 Phase variation of E and H with Bz. The figure is drawn for the case ¢o = 7.
Phase variation of E, H along the waveguide

From (4.14) when =0, p= |p0| e/ where 0=2Bz+0,

The variation of (1 £ p) with ¢ is shown in Fig. 4.3. The phase variation of E and H with Bz follows from
(4.15); itis shown in Fig. 4.4. When S = oo, the phase of E (or H) is constant except for jumps of 180° at
each node of the standing wave. Moreover, E and H are always in quadrature.

4.4 Impedance transformations

At a distance z along the waveguide, the impedance Z and the admittance Y are defined in terms of the
transverse fields by:

z-£ y=1_H (4.19)
H Z E
Using (4.15) and (4.11) this becomes
_EY 1+p _, 1+p 240
CHY1-p 1-p (#20

Z, like Z,, is defined with respect to a direction of propagation; it changes sign with the latter, as
(E x H*),. The direction of propagation is chosen to be positive from the generator towards the load. As
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is evident from (4.20), the only quantity which appears in the equations is the normalized impedance z =
ZIZ, or the normalized admittance y = ¥/Y, = 1/z.

Relation between z, y, p

From (4.20), at every position z along the waveguide,

1 _z—1

1_p 1 421)
. =7
y—1+p P I+y

These bilinear transformations in the complex plane transform circles into circles (a straight line being
considered as a circle of infinite radius).

Smith Chart

The Smith chart is the disk Ipl < 1 in the complex p-plane, where the circles of constant r = Re(z) or
g = Re(y), and x = Im(z) or b = Im(y) have been drawn and labelled (see Fig. 4.5). From (4.14) with

o =0, when z is varied, p = p, e%B? simply rotates around the origin in the p-plane; so one immediately
reads the transformation of z or y from A to B.

Normally the p-plane is presented in a way which corresponds to z, with the points p = -1, 0, +1
appearing from left to right on the real axis. It is seen from (4.21) that adding 180° to the phase of p
transforms z into y; therefore the same chart can be used for y, but in that case the points p = -1, 0, +1
appear from right to left on the real axis.

X b

x=onstant Ab=tonstant

g r

0 9

l—r=constant lL—g=constant

¢-plane

Fig. 4.5 Smith Chart: Transforming from z- or y-plane to p-plane
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Chain matrix of a length £ of waveguide

z Z,
E e |E
Fig. 4.6 A waveguide section of length ¢
Hy £_ Ho
-t 0 z

The chain matrix is the matrix A which relates the fields E_z, H_, at the input of the waveguide section
to the fields E,, H,, at the output.

From (4.12) we have

E =Efe"+Ee™ E,=E +E
— 1 +.YE T 1 _ _L + -
H_,_Z[Eoe - E;eY HO-ZO[EO E;|.
1 -1
Therefore E} = E(Eo +Z,H,) E; = -2—(E0 - Z,H,)
E, cosh(¥f)  Z,sinh(y¢) E,
=/ 1. 4.22
and {H_,] -sinh(y2)  cosh(y!) [H} (4.22)
(7]
The chain matrix thus reads
cosh(yf)  Z,sinh(y¢)
AO= L Gmye)  cosh(ye) |- (4.23)
ZO
It is readily verified that A7(8)= A(-0) (4.24)
and det A=det A71=1. (4.25)

The last equation is simply an expression of reciprocity, because the relation between the chain matrix A and
the scattering matrix S is such that

det A= S .
1
Impedance transformation by a length £ of waveguide
From (4.19), at z = —¢

Ey
Z,H_,

E,
Z OHO

z= whereas at z = 0, zp=

where in z; the subscript L stands for "load".
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From (4.22):

Particular cases:
1) z.=1 then z=1 for any £. This corresponds to p =0, i.e. to a matched waveguide.
2) z1=0 then z=tanh(¥f). Ifx=0,y=/B and Z=Z,; tan(Bs) 4.27)

Such a short-circuited length of waveguide can provide any reactance according to the value of £.

Impedance matching
When a waveguide is matched:
1. Its input impedance is independent of its length.
2. There is no reflected power towards the generator. i
3. VSWR =1, which means that there is no voltage nor current peak along the waveguide.

There are several means for matching a given load Y, to a waveguide (at a given frequency). For
example:

Fig. 4.7 Matching of a load Y, with
a shunt susceptance at z = —¢

By using a properly chosen length £ of guide to arrive at C (Fig. 4.5), one crosses the g = 1 circle in the
Smith chart, where the admittance appears as Y, + jB. It is then sufficient to connect at that point a shunt
susceptance —jB, which can be obtained with a short-circuited length of waveguide (called "stub").

In practice, it is easy to vary the stub length by using a sliding short-circuit in a piece of waveguide,
but it is not so easy to vary the distance between the stub and the load. If this distance is fixed, several
stubs are generally needed to match the load; in fact it is always possible to match any load by using three
equidistant stubs at a fixed distance of 3/8 A, apart.

5. PERIODICALLY LOADED WAVEGUIDES

5.1 Chain matrix

The simplest example of a periodic structure is a waveguide which is periodically loaded with lossless
obstacles (infinitely thin diaphragms, ...). For the dominant mode, these infinitely thin obstacles behave as
series or shunt reactances. We assume that the cell length L is long enough for the evanescent modes from
one obstacle to be negligible at the position of the next obstacle. In the following we consider the case
where the obstacle is equivalent to a shunt susceptance Y.
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v

L

Fig. 5.1 A waveguide with periodic loading of spacing L

Boundary conditions between 2 and 3 (see Fig. 5.1):

(continuity of transverse electric field)

Ey=E; (5.1)
M _H3 .y (definitionof Y) .
E; E

Then

FEEH

If ¥, is the propagation constant in the unloaded waveguide, from (4.22) and (4.24) we have:
{EZ] cosh(Y,L) ——}—}——sinh(‘yaL) [El]
= o
M2l | _ysinh(y,L) cosh(y,L) L

The chain matrix T for a full period of the structure is such that

E, =T E, (5.2)
H3 Hl )

hence
1
1 0] cosh{y,L ——sinh(y,L
Yo M _ysinh(y,L)  cosh(y,L)
and from (4.25), detT=1 (5.4)

By Floquet's theorem, there are particular solutions of Maxwell's equations, called travelling waves,
such that for a translation of one period L along the structure:

E(z+L)] _y4 E(2)
{H(Z+L)j|_e ! [H(z):l ©:3)
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Y=o+ jB is the propagation constant for a wave travelling in the positive z-direction along the periodic
structure. (Let us remember that ¥, is the propagation constant for a wave travelling in the positive z-
direction along the unloaded waveguide.) When YL is purely imaginary we put YL = j8 where 0 is the
phase-shift per period of the structure.

Comparing (5.5) with (5.2) shows that e-¥ is an eigenvalue of the chain matrix T. By (5.4) the
product of the two eigenvalues of T is 1; therefore the other eigenvalue is €Y, which corresponds to a

wave travelling in the negative z-direction along the periodic structure (this is reciprocity). The sum of the
two eigenvalues of T is given by

P =Ti(T) . (5.6)
5.2 Dispersion diagram

Using (5.3) and (5.6) we obtain the dispersion relation
cosh(YL) = cos 9=cosh(yoL)+%sinh(yoL). (5.7)

Dependence of Y on frequency

The admittance of a lossless one-port network can be written as an infinite series of terms, each
representing the admittance of a series-resonant circuit at a resonant frequency of the network ([27], p. 87):

_ 5 jo
Y'Eo L,,(m%,—a)z) (5.8)

where @, is the nth series-resonant frequency of the network, and L, > 0 is the equivalent self-inductance
of the network at frequency @,. The frequencies w, are supposed to be numbered in increasing order,
starting with @, = 0 (if L, < o).

We can rewrite (5.8) as

R T BT 1
JoL, 0RO Ny R

Y=

For low frequencies (@ << ®)), this expression approximates to

= 1
+joC, where C,=3% >0 5.9
0 ? ° n=1 Ln('opzl 59

Y=

Dependence of y on 7,

The susceptance Y = yY, is independent of the direction of propagation; therefore it is an even
function of yo. Since Y, is an odd function of Yo, y must be an odd function of Y.

In the unloaded, lossless guide:

a) for an H wave, from (3.20) we have Y, = y,/(jop); therefore, using (5.9) and (3.5) we obtain

U 2Co H 2Co 2Co
=B 220 | B 250 4250
Yo L, c [Lo c E] Yo c (5.10)

Corresponding to L, = o, a purely capacitive term —42C,/c may be obtained with a dielectric rod across a
rectangular waveguide ([28], p. 122). For metallic inductive obstacles, the term /L, is the most important
one (at low frequencies); for metallic capacitive obstacles, in all examples published in the literature [24,
28], the bracket in (5.10) vanishes and y = YoCo/t.
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b) for an E wave, from (3.22) when 6 = 0, we have ¥, = Jjwe/Yo; therefore using (5.9) we obtain

y B C
v PL e 1D
0

For a purely capacitive obstacle (L, = o), again y = YoCo/E.
We shall here consider only two very simple cases:

1) inductive obstacle (H wave):

1 u 1
y=——=—>2K; . 5.12)
YoLlo Yol (
2) capacitive obstacle (H or E wave):
Co 5.13
y=yo?=yoL-2K2 . ( . )

In (5.12) and (5.13), K, and K, are real, positive, dimensionless constants.

Inductive obstacles
With (5.12) the dispersion relation (5.7) reads
sinh(Y,L)

(/]

cosh(YL) = cosh(y,L) + K; where YL=oL+ jBL . (5.14)

For the lossless unloaded waveguide, Yol is either real or purely imaginary; therefore cosh(yL) is always
real, which entails

sinh(al) sin(BL) =0 hence «L=0 or PL=nn (5.15)

When oL =0, yL = j6, which corresponds to a passband of the loaded waveguide; whereas BL = nx, YL
=0l + jnt corresponds to a stopband of the loaded waveguide.

Above the smooth guide cut-off, (5.14) reads

cosh(yL) = cos(BL) = cos(B,L) + K; %ﬁﬂ with ;>0 . (5.16)

o
This relation is plotted in Fig. 5.2 for K; = 4.

In the unloaded waveguide, when @ increases from O ilﬁ the dispersion diagram, one first follows the
©-axis up to @, afterwards one follows the hyperbola k2 = k7 + Bj.

For the loaded waveguide, the cut-off frequency of the first passband is reached when

. L L K
BL=0 ie. [%tan%—=71.

This happens for 0 < BoL < 7t it is the beginning of the first passband; when PolL = =, B[: = 1 is the end
of the first passband. For a slightly higher frequency, cosh(YL) < -1 and ¥ = ol + jz : this is the second
stopband. For increasing frequency, YL comes back to jx when

BoL o Bl _ Ky
2 2 2
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Fig. 5.2 Variation of cosh(yL) with BoL for inductive obstacles (H wave in unloaded guide).
In the figure Ky = 4.

This happens for & < BoL < 2x: it is the beginning of the second passband. When BoL = 2x, BL = 2x:
this is the end of the second passband.

More generally, when Bol = nx, BL = nr is the end of the nth passband (n = 1, 2, ...).

Capacitive obstacles
With (5.13) the dispersion relation (5.7) reads
cosh(YL) = cosh(y,L)+ Kp(Y,L) sinh(y,L) where YL =oL+ jBL (5.17)
Again, cosh(YL) is always real. Above the smooth guide cut-off, this relation becomes
cosh(YL) = cos(BL) = cos(BoL) - K2 (BoL) sin(BoL) with K3 >0 (5.18)
This relation is plotted in Fig. 5.3 for K5 = 0.2.

For the loaded waveguide, the first passband starts when BL = 0, i.e. when Bol = 0; the cut-off

frequency of the smooth guide is thus also the cut-off frequency of the loaded guide. The first passband
ends when BL = 7, i.e. when

BoL, Bl 1
2 2 2K,

’
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Fig. 5.3 Variation of cosh(yL) with BoL for capacitive obstacles (H or E wave in unloaded guide).
In the figure K5 =0.2.

this happens for 0 < oL < . For a slightly higher frequency, YL = oL + jx: this is the second stopband.

YL comes back to jr when oL =, which is the beginning of the second passband. The second passband
ends when BL = 2x, i.e. when

BoL (Bl 1 .
2 2 2K,

this happens for © < BoL < 2. Generally, when BoL = nx, BL = nx is the beginning of the (n+1)th
passband (n=0, 1, 2, ...).

5 Finally, the (k,B) dispersion diagram is obtained by using B, as a parameter and computing k from k2
= k& + B while P is deduced from (5.16) or (5.18); the result is shown in Fig. 5.4.

Remarks

1)  From Fig. 4.2, the distance z between nodes in a standing wave with infinite VSWR is such that
Boz = w. Therefore, when BoL = nr, for standing waves with § = e in the smooth guide, L is an exact
multiple of the distance between nodes. One may then insert infinitely thin diaphragms at the nodes of £
without perturbing the fields, which yields BL = nn for the loaded guide at the same frequency. This

explains why in the dispersion diagram, the points foL = nx of the unloaded guide also belong to the
dispersion curves of the loaded guide.

There is however one exception to this rule: the BoL = 0 point of an A wave in the smooth guide (see
Fig. 5.2). Indeed, such a wave would have H, # 0 independent of z (since § = 0), which would violate
the boundary conditions on the diaphragms.
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unloaded waveguide
e inductive obstacles y = 2K,/(yL)
--------- capacitive obstacles y = 2K,*(yL)

Fig. 5.4 Dispersion diagram for a periodically loaded waveguide. Pol and BL are the phase shifts
per cell in the unloaded and a loaded waveguide respectively. For the sake of clarity, the reflection of
the curves about the vertical lines BL = nx has not been drawn. The figure corresponds to the case
kcL =T, Kl =4, KZ =0.2.

2)  The dispersion relation (5.7) only determines YL up to a change of sign, and L modulo 2x. It
follows that the dispersion diagram is symmetrical with respect to the vertical axis PL = 0, and is periodic
with period 2z in BL; it is therefore also symmetrical with respect to all vertical lines PL = nx, where n is
any integer. As a consequence, it is sufficient to consider the interval 0 < BL < 1.

Because of the 2x periodicity of the dispersion curves for the loaded waveguide, any straight line
Vp = @/B = v crosses every passband at one point. Therefore, whatever a particle velocity v may be, in
every passband of a loaded guide there is a frequency for which the phase velocity is equal to v. Thisis in
contrast with the unloaded guide where v, > 1/Vep.

3)  When the loading y of the waveguide is increased, for example by decreasing the hole radius of the
irises (which are capacitive obstacles for an E wave), the width of the stopbands increases while the width
of the passbands decreases. For maximum loading (i.. no hole in the irises), the passbands have zero
width; the dispersion curves reduce to horizontal lines passing through the points Bol = nx of the unloaded
guide, which is natural because the cells in the loaded guide are then completely decoupled.

Resonant coupling and backward waves

Although the above examples are over simplified, they yield a correct qualitative picture of the
dispersion diagram for a periodic structure. They become increasingly inaccurate at higher frequencies,
when several modes can propagate in the smooth waveguide, and when the approximation (5.9) has to be
replaced by the correct expression (5.8) for the shunt susceptance of the obstacles. In particular, (5.8) must
be used when the first resonance of the obstacles is close to the cut-off frequency of the smooth guide; the
obstacles then produce a resonant coupling between cells, thereby modifying qualitatively the dispersion
diagram. An example is a disk-loaded waveguide with slots in the irises, i.e. the slotted iris structure, for
which the first passband is of backward wave type ([29], p. 681). The same is true for the travelling wave
accelerating structure of the CERN SPS [30], which is a circular waveguide periodically loaded with

horizontal bars; the bars behave as A/2 resonators whose resonant frequency lies below the Eg; mode cut-
off of the cylindrical envelope.
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Coupled modes

Most often, in the lower passbands, the frequency is increasing or decreasing monotonously within
the interval 0 < BL < x. However, even in lossless periodic structures, dispersion curves may exhibit a
local maximum or minimum within the passband, i.e. when L # nr. In the stopband which starts at such
local extremum, ol # 0 while BL # an; this means that cosh(YL) is then complex {31].

Such a case occurs for some range of the hole diameter in a disk-loaded waveguide, for the hybrid
EH; wave which is used in RF separators ([19], p. 252). It occurs more often at higher frequencies,
when several modes propagate in the unloaded waveguide and their dispersion curves cross when folded
into the interval 0 < ® < . In Fig. 5.5 are shown the dispersion curves for two modes (Eoqy, Egz) in an
unloaded circular waveguide. These curves are the dispersion curves for vanishingly small loading of the
guide. When the loading is increased, the curves are progressively deformed, as it appears in Fig. 5.4.

It can be shown ([32), Chap. 6,7, 8)™) that if they correspond to modes which are coupled through
the lossless obstacles, the curves do not cross (as the unperturbed curves do at points A, B, Cin Fig. 5.5),
but they split into two curves, like the two branches of a hyperbola. If the dispersion curves of the
unloaded waveguide cross with group velocities of opposite signs, one branch of the dispersion curve of
the loaded waveguide has a local maximum and the other has a local minimum. In the stopband between
these local extrema, cosh(yL) takes two different complex conjugate values corresponding to the two
coupled modes (see Fig. 5.6). The crossing point is locally a centre of symmetry for the dispersion curves.
Loading the waveguide not only provides coupling between modes, but also shifts the frequency of the
crossing point.

If k; and ky (with k1 < k) are the frequencies at the extrema, the dispersion curves are locally
represented by

y=j [a(k—"—ll;ﬁ) +btc (k—kl)(k—kz)] (5.19)

where a, b, ¢ are real coefficients.

In the passbands k< kj; or k> kp, we have
a=0, B=a(k—kl—;kl) +b x ¢ (k—kl)(k—kz) (5.20)

In the stopband k1 < k< k2 we have

a=Feyf(k -k )ky —k) , B:a(k—kl—;-kl) + b (5.21)

B of (5.21) is represented by the dotted line in Fig. 5.6(b).

If y=a +jB is a complex propagation constant at a given frequency, so are Y, v* and hence —y*.
Indeed, —y represents a wave travelling in the opposite direction, which (except for the sign) has the same
propagation constant when the structure does not contain nonreciprocal media. When losses are neglected,
the Helmholtz equation and the boundary conditions for the fields are real, so that the complex conjugate of
a solution is also a solution: thercforea;'yis also a possible propagation constant.

Summarizing, if ¥= &+ jB is a propagation constant, so are to +j3 and o —jB. In the half-
plane B > 0 they correspond to the two waves (5.21) when there are extrema at k1, k inside the interval
0 < BL < 7. In the opposite case, there is only one wave for each direction of propagation; this requires
that either & could not be distinguished from —0. (which means that o = 0), or that BL could not be
distinguished from —BL modulo 27 (which means that BL = nx): in the first situation we are in a normal
passband (without extremum), in the second situation we are in a normal stopband at BL = nr.

(*) It should be noted that k in this reference is our P.
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(a) (»)
0 2L r
Fig. 5.5 Dispersion curves for an Fig. 5.6 Close-up view of crossing points. The
unloaded waveguide, folded into the dispersion curves of the unloaded waveguide cross with
interval 0 < BL <®. The figure group velocities of the same sign in (a), of opposite
corresponds to a circular waveguide of signs in (b). On the dotted line in (b), cosh(yL) is
radius b, with L/b = 4/3. complex.

If there is no stopband inside the interval 0 < BL <, k1 = k2 and (5.19) reduces to
B=(aic)(k—%) + b (5.22)

This represents the simple crossing of the dispersion curves of two (uncoupled) modes.
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6. RESONANT CAVITIES
6.1 Boundary conditions

A cavity is a volume of space enclosed by metallic walls, except for some holes which couple the
cavity to the outer space. The metallic wall is very close to being an electric wall (or short circuit) with
boundary conditions:

[fixE]=0 A-H=0

where 7 is a unit vector directed along the outward normal to the cavity surface. When @ # 0, the
condition on H is a consequence of the condition on E through Maxwell's equations (2.1).

In order to define an eigenmode of the cavity, one must also impose boundary conditions on a
surface §' which closes the holes. There are two main possibilities:

1)  The surface § is also an electric wall (short circuit):

[ixE]=0  7-A=0 on s (6.1)
2)  Thesurface S is a magnetic wall (or open circuit):

A-E=0  [axH|=0 ons$' . (6.2)

In the following, we only consider the first case, i.e. short-circuit modes. The open-circuit modes have
different frequencies and different field patterns.

From Maxwell's equations at a given frequency, for a source free eigenmode, both E and H satisfy
the homogeneous Helmholtz equation:

AE+K*E=0, AA+KH=0. (6.3)
These equations only hold when €, p1 are scalar quantities independent of position in space; this will

always be assumed in the following. Moreover, for the fields £ or H to be non-zero, k2 may only take a
discrete set of eigenvalues 2.

In order to uniquely” determine a solution to this equation, two boundary conditions must be
imposed on the whole surface S of the cavity ([8], p. 344). The closed surface S comprises the surface of
the cavity walls and the surface S' which closes the holes. On S, one complements (6.1) with

[ﬁxE]:O and divE=0 for E (6.4)
i-H=0  and [ﬁxcurlﬁ]:O for H (6.5)

Suppose we have a solution F of the vector Helmholtz equation
AF 4 KPF =0 . (6.6)

Remembering that A = grad div - curl curl, let us take curl and div of this equation; it follows

* Except in the degenerate cases, when several solutions have the same eigenvalue kc2 In these cases the general solution is a
linear combination of appropriately chosen orthogonal basic solutions.
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—curl curl(curl F ) +k2 (curl F ) =0 or A(curl F ) +k2 (curl F ) =0

and Aldiv F)+kZ(div F)=0 (6.7)
hence grad div(grad div F)+ k2(grad div F)=0
or A(grad div F)+k¥(grad div F)=0.

Therefore, if we know a vector solution F of the Helmholtz equation (6.6), div F is a solution of the
scalar Helmholtz equation (6.7), whereas curl F and_ grad div F are both solutions of the vector
Helmholtz equation (6.6), all with the same eigenvalue kcz.

Suppose now we have an electric field solution £ of the Helmholtz equation subject to the boundary

conditions (6.4); thenif curl E # 0, it is a solution of the Helmholtz equation which on § satisfies the
boundary conditions

fi-curl E=0 (6.8)
and [fixcurl(curl E)| =[x grad div ]+ k2[fixE]=0.
Indeed, the conditions (6.4) mean that the tangential component of E, and div E vanish along the
surface S; this, together with the Helmholtz equation, immediately entails (6.8). Comparing (6.8) with
(6.5) we see that curl E satisfies the boundary conditions for A .

If on the other hand div E #0, then graddiv £ is a solution of the Helmholtz equation which on
§ satisfies the boundary conditions

[ixgraddiv E]=0  and div (grad div E)=—¢Z div E=0 . (6.9)

Both conditions follow from div £ =0 on S. Comparing (6.9) with (6.4) we sce that grad div E
satisfies the same boundary conditions as £.

Similarly, if we have a magnetic field solution A of the Helmholtz equation subject to the boundary

conditions (6.5), curl H is a solution of the Helmholtz equation which on § satisfies the boundary
conditions

[ﬁxcurl H]:o and  div(curl H)=o . (6.10)

Indeed, the first of these conditions follows from (6.5) while the second one is an identity. Comparing
(6.10) with (6.4) we see that curl H satisfies the boundary conditions for E.

If on the other hand div A # 0, then grad div # is a solution of the Helmholtz equation which
on § satisfies the boundary conditions

ii-graddiv H=r7-curlcurl H - kc2 A-H=0
(6.11)
and [ﬁxcurl(grad div H)]:o.

The first of these conditions follows from the Helmholtz equation and from (6.5), which entails that the
tangential component of curl H vanishes along _the surface S; the second condition is an jdentity.
Comparing (6.11) with (6.5) we see that grad div H satisfies the same boundary conditions as H .

Some properties of the eigenvalues kc2

For two arbitrary vector fields F , G we have
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G-graddiv F = div(G div F)-div F-div G
and G-curlcurl F = div[curl E x G]+cur1 F-curl G .

Suppose, to be general, that F is a solution to the inhomogeneous Helmholtz equation
AF+k*F=K . (6.12)
By taking the dot product of this equation with G and using the above relations we obtain
div(G div F+[Gxoul ) - div F-div G - cul F-cull G + K2F-G = G-K
hence
§7-G div F+  #-[Gxcurl F] ds
S et FlaGGfmment 7

L ) ) L L (6.13)
~[(div F-div G+curl Focurl G) av+k*[F-G av=]G-K av .

If we take K = 0 (then &? =kC2) and G=F ‘, either set of boundary conditions (6.4) or (6.5) for F
makes the surface integral in (6.13) vanish; so we have

I F |zdv=j(| div F |2+|curl F |2) dav . (6.14)

Tgcreforc, the eigenvalue kc2 is a real number > 0, and the eigenvector F may be taken as real. Moreover,
kZ =0 isonly possible when div F =0 and curl F = 0.

. Ip (6.13), f satisfies the inhomogeneous Helmholz equation (6.12) while G is arbitrary. Let us take
G = Fp where Fy satisfies the homogeneous Helmoltz equation

AﬁB + kgiB =0 .
Here k,z; represents the eigenvalue which corresponds to ﬁB. Then there is a second relation similar to

(6.13) where K =0, F is replaced by 17'; , k2 is replaced by kﬁ* = k%, and G is taken as F. Taking the
difference with (6.13) yields

§(7-F5 div F=7i-F div B +7-[Fp xcur F|-7 [Fxcun F3) s
S
+(* - k3)[F - Fy av=[F3 K av . (6.15)

Note in passing that this relation is basic for the computation of the frequency shift due to any wall
perturbation in a cavity ([20], p. 414).

Now we take F = F, where ﬁA satisfies the homogeneous Helmholtz equation

AﬁA +kiiA =O .

Then in (6.15), F is Fy, k2is ki and K is0; hence
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;(a-ﬁ,}‘ div Fy—7i-F, div 'F‘g+;i-[i,;‘xcur1 ﬁA]—ﬁ-[ﬁAxcml F",;]) ds
S

+(k3-k5) JEs - Fy av=0. (6.16)

If both F, A fB satisfy the same set of boundary conditions on S, it being either (6.4) or (6.5), the surface

integral in (6.16) vanishes; therefore the eigenmodes F,, Fg are orthogonal over the cavity volume when
A#B.

6.2 Classification of modes

Starting from a vector solution F of the Helmholtz_equation (6.6) subject to either boundary
conditions (6.4) or (6.5), the derived vector fields curl curl F (when curl F #0) and grad div F (when
div F #0) are both solutions of the Helmhgltz equation with the same eigenvalue k. ; moreover they both
satisfy the same boundary conditions as F. We have to consider four possibilities ([26], p. 121 and

p. 173):
1) cul F#0, div F =0
From (6.14) kc2 #0; then the Helmholtz equation (6.6) may be written as
F = le-curl curl F — kizgrad div F (6.17)

(4 C

X ng

Fy 2%

which shows that F is the gum of two parts F‘, and F3, each of which satisfies the Helmholtz equation
with the same eigenvalue £;, and also satisfies the same boundary conditions as F. The first part F,
(solenoidal) has zero divergence; the second part F 3 (irrotational) has zero curl.

Ig the fields F, G in (6.13) are taken as the solenoidal and the irrotational part of F, since X = 0 and
k2= k: #0, it follows immediately that these two parts are orthogonal over the cavity volume. Therefore
the field F' in (6.17) can be considered as the superposition of two orthogomal solutions to the Helmholtz
equation, which are degenerate since they correspond to the same eigenvalue &

When the degeneracy is removed (in most cases a slight deformation of the cavity wall is sufficient to
achieve such an effect), the solution to the Helmholtz equation splits into a pure solenoidal field and a pure
irrotational field having different eigenfrequencies. We are then led to three remaining possibilities.

2) culF 20, divF=0

Assume that F satisfies the set of boundary conditions (6.4); we shall then write it as E, (with an

ordinary subscript £ for solenoidal modes). It been shown in (6.8) that curl E, is a solution of the

Helmholtz equation with the same eigenvalue £, which satisfies the set of boundary conditions (6.5);
therefore we can let

curl E’, = q I?, where a is some scalar constant # 0 . (6.18)

H, is a solengidal solution of the Helmholtz equation subject to the boundary conditions (6.5). Again, by
(6.10) curl H, is a solenoidal solution of the Helmholtz equation which satisfies the set of boundary
conditions (6.4); therefore we anticipate that

curl H, = b E, whereb issome scalar constant # 0 (6.19)

From (6.18) and (6.19) we have

curlcurl E, = ab E, .
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With ab=k} 20, (6.20)
this is precisely the Helmholtz equation (6.6) for E,.

The same result is obtained if one firgt assumes that F (= H,) satisfies the set of boundary conditions
(6.5). Therefore, the solenoidal modes E,, H, have the same eigenvalue & and are related by (6.18),
(6.19) and (6.20). In particular, with a = —jou and b =—jw ., they correspond to solutions of
Maxwell's equations:

curl B, = —jou Ay, owl Ay = joge E, with ofep = kf>0.  (6.21)
Moreover, the volume integrals are linked by (6.14). Taking F = E, we obtain
&f | B fav=[| curl Efav=clu?[|H, [av

hence ef | E [av=n[| A, [av . (6.22)

The same result is obtained by taking F = H, ,- It simply expresses the equality (2.126) of time averaged
electric and magnetic energies in a solenoidal mode.

3) cul =0, divF 20

With F satisfying either set of boundary conditions (6.4) or (6.5), it has been shown in_(6.9) and
(6.11) that grad div F satisfies the same set of boundary conditions as F. In fact, for curl F = 0 the
Helmbholtz equation

graddiv F + kfF = 0 where from (6.14) k% #0 (6.23)

shows that F and grad div F are the same vector fields, up to a scalar multiplier (- k%).

When F satisfies the set of boundary conditions (6.4), we shall designate it by E"k (with a Greek
subscript A for irrotational modes). Since curl E; =0, we may write

E, = grad ¢, . (6.24)
Inserting (6.24) into (6.23) yields
2 _ 24 _
grad(A(pk + kk¢x) =0 or A}y +kj¢; = constant.

Since ¢y is only determined up to an additive constant and since k,% # 0, one can always choose the additive
constant such that

Ady +k20; = 0, iz #0. (6.25)

The boundary conditions (6.4) require that on S, ¢3 = constant and A¢y = 0. With (6.25), both
conditions are satisfied when

0 =0 on §. (6.26)
From (6.23) divided by (- k;%) and (6.24) it appears that one may take
|
¢;\' = div Ek .

ki
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Equation (6.7) shows that this determination of ¢y satisfies (6.25); from (6.4) it is obvious that it also
satisfies (6.26). Multiplying (6.25) by ¢, and integrating over the cavity volume yields

+ 00y
A on

With (6.26) this confirms that k} is real and positive.

§onZhas - ||y [fav + K| oy Pav=0. (6.27)

When F satisfies the set of boundary conditions (6.5), we shall designate it by I:Il. Again we may

write

A, =grad v, (6.28)
with Ay, +ky, =0, k20 . (6.29)
The boundary conditions (6.5) require that

Mo s, (6.30)
on
Again, one may take Yy = —7(17 div ﬁ)ﬁ
2 :

that it satisfies (6.30) is obvious from (6.5) because (6.23) entails

grad(——% div Irll) =H, .
ey

Similarly, from (6.29) we deduce

w’;a—;’nlds - [| B |2dV + k]| v fav=0. (6.31)

From (6.30) it again follows that k; is real and positive.

Remarks

a) Since the boundary conditions (6.26) and (6.30) are different for E, and H,, the eigenvalues k£ are in
general different; therefore there is no relation between E, and H, . Physically, E, (or H, ) is a static field
(@ = 0) produced by surface charges (or currents) such that the boundary conditions (6.4) or (6.5) are
fulfilled. When kf # 0, div F # 0: the solution of the Helmholtz equation (6.23) also requires the
existence of a volume distribution of electric (or magnetic) charges.

b) The solutions of the scalar Helmholtz equation (6.25) or (6.29) subject to the boundary conditions
(6.26) or (6.30), form a complete orthogonal basis for expanding a scalar function in the cavity volume. In
the case of Neumann's boundary condition (6.30), to the eigenvalue k, = O there corresponds a non-zero

eigenfunction ) = constant, which mus: be included in the set of eigenfunctions in order to have it
complete.

4) curlF=0, divF=0

From (6.14) this is the only case where the eigenvalue k” is zero. Such modes could be considered to
be either solenoidal or irrotational; but since they show no relation between E and H type of modes, we
shall consider them mainly as irrotational and designate them with a Greek subscript. Because their
eigenvalue k; = 0 is the smallest possible, we shall number them with A = 0. On the other hand, these
modes might equally well be considered as solenoidal with k,2= 0.
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From curl £ =0 one can still write (6.24) or (6.28); the condition div F =0 still takes the form of
(6.25) or (6.29) where now k.A 0.

Types of fields for k! =0

When F satisfies the set of boundary conditions (6.4), one must have

bo = constant §p; on each disconnected part S; of S (6.32)

With &2 =0, (6.25) entails s §990 46 - ¢ (6.33)
i Si afl

whereas (6.27) yields 500 }3;’: —f | B fav (6.34)

If the surface S is in one piece, (6.34) together with (6.33) implies Eo = 0. If the surface S is made up of
several disconnected parts, §o can take different ¢g; values on the different parts, and Ej is the electrostatic
field between several unconnected conductors which are raised to different potentials (see Fig. 6.1b).

Cut for magnetic scalar potential

S
ng
)
a) b)

Tubular
conductor

Fig. 6.1 The four basic types of cavities:
a) simply connected, with a single surface ( Eo =0, I-70 =0)
b) simply connected, with a surface in several parts (E, # 0, Hy = 0)
¢) multiply connected, with a single surface (E, = 0, Hy # 0)
d) multiply connected, with a surface in several parts (Eg # 0, Hy # 0).

When F satisfies the set of boundary cgndmons (6.5),_ o still has to satisfy (6.30) on S. If yp is
univalued, (6.30) together with (6.31) where k;. =0, implies Hy =0. To have Hy # 0 requires o to be
multivalued, which is possible only if a current (and therefore a mctalhc conductor) makes a loop inside the
cavity. By introducing a cut inside the cavity volume, in the form of a surface having the loop and the
cavity walls as boundaries, such that it prevents a full turn around the metallic conductor (see Fig. 6.1c),
one makes yo univalued but taking different values Wo+ and yo- on both sides of the cut. Since
H = grad y is continuous across the cut, the difference (yo+ — Yo-) must be a constant along the cut.
W1th (6.30), the only surface integrals which are left in (6.31) are the integrals on both sides of the cut;
therefore

d * 0 ~ 12
J (wor—wo- )52 das=(vi. ~vo-) | 045 = [| A [av.(635)
cut n+ cut \ﬁ,_z

flux of the magnetic field through the cut

HO is then the D.C. magnetic field produced by D.C. surface currents on the cavity walls, such that
Hy =0 on the walls (which corresponds to superconducting walls).

80



6.3 Expansion of the electromagnetic field inside a cavity

Once all the solenoidal modes E,,H, and the irrotational modes E,, H, of a cavity have been
determined, one may represent the fields in the cavity as

E = Zalél + Zalgl and ﬁ = szﬁ[ + Ehﬁ)‘ (636)
14 S

where different E (or H ) modes are orthogonal over the cavity volume, i.e.
JEx-Eg dv=0 and [H,-Hy dVv=0 when A # B. (6.37)
Here A and B represent any kind of subscripts, Latin or Greek.

If A and B modes are both either solenoidal or irrotational, (6.37) follows from (6.16). If one mode
is solenoidal and the other is irrotational, (6.37) follows from (6.13) where &2 is taken either as k2 or as
k2 provided one of them is dlfferent from zero; but (6.13) ensures the orthogonality of a solenmaal and
an motaﬂonal mode even when k = k # 0. The fact that irrotational modes are orthogonal to solenoidal
modes proves that no one of these sets of modes is complete; both are needed to form a complete basis of
vector functions.

Since the eigenvalues k2 ky of the Helmholtz equation (6.6) and the boundary conditions (6.4) or (6.5)
are real, the eigenvectors E or can be taken as real except for some constant complex factor.
Therefore the orthogonality relauons% 37) may be written with or without an asterisk; the advantage of
writing them with an asterisk is that when A = B, the integrals in (6.37) are real and positive.

From (6.37) it follows immediately that

E-Eg dv H-Hy av
HEBIdV [|Hg | av

One of the most illuminating ways of deriving the coefficients (6.38) is to use Maxwell's equations written
in a completely symmetrical form with respect to electric and magnetic quantities ([33], p. 191):

cul H=17J+ joe E (6.39)
cul E=—J, - jou H . (6.40)

In (6.40) J,, is a fictitious magnetic current density, which ultimatgly will be made equal to zerg. The
electric current J will be expanded by using the same base vectors as E, while the magnetic current J will
be expanded by using the same base vectors as H. In the following, € and 1 are assumed to be real; then
with (6.21), y is also real.

Expansion of the electric current density

From (6.39) we have
[7-Ezav = [(curl A - joe E)-E’;dv=j(div[1?xé,‘;]+ﬁ-curl E;)dv-jmej'é-éj;dv
or [T -Eqdv —§[iix |- ExdS = [H -curl Exav - joe| E- Eqdv (6.41)

The left-hand side of (6.41) can be considered as the scalar product of E; with an electric current volume
density

Jrotar =T = FixH]-8(n) (6.42)
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where n is the distance from the cavity surface, measured along the normal to the surface; —{7 x H ] would
be the electric current surface density if H = 0 outside the surface (i.e. inside the metal). Because of the
boundary conditions (6.4) for E 4 the surface integral in (6.41) vanishes.

For the solenoidal modes, (6.41) becomes, using (6.21):
|7 -Ejav = - joe|E-E;dv + jou A -Hav. (6.43)
For the irrotational modes, (6.41) simply reads

[7-Erdv =-jwe[E Eyav. (6.44)

Expansion of the magnetic current density

From (6.40) we have
JIn-Hyav = f(~curl E-jop H) -Aav = J'(—div[ifxfl;]—- E-curl H;)dV— jou[H-Hyav
or [Tm-HadV +§{ 7 x E| HydS = [ E-curl Hydv - jop|F- Hydv. (6.45)

The left-hand side of (6.45) can be considered as the scalar product of H, with a magnetic current volume
density

-

T totat = T +[7ix E]-8(n) (6.46)

where [/ x E ] would be the magnetic current surface density if £ = 0 outside the surface (i.e. inside the
metal). With the boundary conditions (6.5) for H, the surface integral in (6.45) does not vanish.

For the solenoidal modes, (6.45) becomes with (6.21):
[Jm-Hydv +§[7ix E| Ayds = joye] E-Eyav - jou[ A - Hydv. (6.47)
For the irrotational modes, (6.45) simply reads
[Jm-HydV +§[iix E|- HydS = - jop] - Fydv . (6.48)
Solenoidal mode coefficients as, by

They can be computed from the system of equations (6.43), (6.47); the result is

(K~ k) E-Eqav = joufT -Eqav + joogu([7,,- Hydv + §[7i x E]- Hyas) (6.49)
(k- KZ ) H-Hjav = juse]T-E;av + jwel] 7, Hyav +4[iix E|- yds) (6.49b)

Irrotational mode coefficients ay, by,

They are given straightforwardly by (6.44) and (6.48):

jE-E{dV:—]_—;)e-jf-E;dv (6.50a)
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- 1 (o5 % o1 o
H-HydV=———I\|J, -H,dV+¢ |nxE|-H;dS| . (6.50b)

BBV = ([T AV +4 |- Az ds)

Using (6.49) and (6.50) yields the ap and bp coefficients through (6.38). When remembering (6.22), the

resulting expressions (6.36) for E and H agree with those given by Van Bladel ([33], p. 299).

The irrotational E, modes with A # 0, having div E, # 0, are necessary in order to represent a non-
zero £div E =p, which occurs if there are electric charges in the cavity. Similarly, the irrotational H)
modes with A #0, having div H, #0, are necessary in order to represent a non-zero jdiv H =p,. In
fact, although there is no volume density p,, of magnetic charge inside the cavity, there is a fictitious surface

density ©,, = -lLH -7 associated with the fictitious magnetic current surface density [# x EJ ([34],
p. 181).

Remark: Tt is interesting to verify directly that the expressions (6.36) for E and H do satisfy Maxwell's
equations (6.39) and (6.40).

From (6.21):
curl H - joe E = Z(jm,eb,—jmea,)f,—jme%alix .
t

With (6.22), (6.38) and (6.43), (6.44) this expression transforms into
- % -

cul A-joe E = $EALEN 5p BV

¢ J|Eav x T[|E[av

=J insideV. (6.51)

This is Maxwell's equation (6.39).
Similarly, from (6.21):

~curl E-jop H = ¥(josua, — jouby ), - fcougbxﬁx .
V4
With (6.22), (6.38) and (6.47), (6.48) this expression transforms into

= _ (7 Hydv +§{axEl-Hyds . [J, -Hidv+$|AxE| HydS
—curlE—ja)pl-I:ZHljm ¢ §[ ] gt Hfm A f[ ] A

A N
= Jp +[fix E]-8(n).

This is Maxwell's equation (6.40) except for the last term in (6.52). Since this term is zero ipside v,
Maxwell's equation (6.40) is again satisfied inside V; but the 8(n) term is responsible for producing non-
zero coefficients in its own expansion.

Effect of a finite wall impedance

In (6.49), the surface integral prevents the coefficients ay, by from becoming infinite when k2= k,z .
In both (6.49) and (6.50b), the surface integral can be split as

§(ixE) Hayds = [[AixE| HydS + [[ixE| HydsS . (6.53)
S holes walls

On the metallic walls of the cavity, we apply the approximate boundary condition (3.24):

E = Zs[ﬁ, X Fi] or [H X E"] =ZH,.
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Since #-H 4 =0 on S, the last integral in (6.53) becomes, with (6.36):

[[AxE| HydS= [ZH HprdS=3b, [ZH, HidS+Ibh, [ZH, HidS  (6.54)
walls walls m  walls v walls

Introducing (6.53), (6.54) in (6.49b) and (6.50b), while remembering (6.38) yields

~ 2 , - ) - .
(K- )oul|Adf av - joeSby, [Z,H,-Hrds- joch, [Z,A,-Hyds

m  walls vV walls
=jm,£jf-E;W+j«ml:jfm-ﬁ;dV+ j[ﬁxi]-fl}dS] (6.55)
holes
) 1 . 1 L.
and b dV+——3b, [Z A, BrdS+——3b, |ZH, HydS

SO walls JO Y yalls

L7, B+ j[ﬁxé]-ﬁ{ds} (6.56)

Jom holes

The set (6.55), (6.56) constitutes an infinite system of linear equations for the b's and the b)'s. In
order to obtain a simple approximate solution to this system, we shall only keep in (6.55) the diagonal term

m = {, and in (6.56) the diagonal term v = A, because the diagonal terms are likely to be the most important
ones. Then (6.55) reduces to

{(kz 13| av - joe jzs|ﬁ,|2ds}b,
walls

=jm,eji-éjdV+jwe[jf,,,-ﬁ;dv + [[AxE] Hyds (6.57)
holes
while (6.56) reduces to
= 12 1 -2 1|+ ne o =] o
A av+— [z|B[ asle, = -—| T, Arav+ [[AxE]-Hyds|.  (6.58)
JOU alls Jo holes

With (6.22) and the definition (2.127) of Q we have, for a solenoidal mode ¢£:

IRS((D[) |ﬁ,'2dS
04 _ walls | (6.59)
O julAfav

If we define the Q factor of an irrotational mode A by the same formula (6.59) with £ replaced by A,
we shall have in both cases, using (3.25):

[Z5() |17Al2dS=[1+j sgn(w)] }m%

walls

TR0 ) o as = 2L 38@) ool wilaafav - 6.60)
walls Qa

It should be noticed that even when @ = 0, the ratio W“‘°7L| / 0y which appears in (6.60) is still perfectly
defined by (6.59).

Therefore (6.57) and (6.58) becomes, with (6.38):

84



{ktk}wﬂ_‘%@(“ﬁ l%”jﬁﬁ}dV: jore[T-Erav + jn{ﬁm-?]zdv . j[ﬁxE]-FI;ds} 6.61)
/] holes

and 1412 sen(w) m_xl [V -
O 0

Fi6nally, the solenoidal mode coefficients for the electric field are readily obtained by combining (6.43)
and (6.61):

[T, -Hydv + j[ﬁxﬁ]-ﬁ;ds} (6.62)

1
Jop holes

k2 g2 4 2 1o sen(o) foy [E-Ejav
{4 0, o /4

= jmu[l 127 sen(0) IQL' } JJ-Epdv + jou [ﬁm Hydv + [[AxE|-HydS| (6.63)
O o holes
whereas the irrotational mode coefficients for the electric field are still given directly by (6.44):
= 1 = =
E-E,dV=——|J EdV . (6.64)
J A e I A

Remark: From the derivation above, it is clear that the expressions (6.61) to (6.63) are only a first
approximation; but it is very difficult to go beyond this approximation when taking the wall losses into
account. This approximation is essentially valid in the vicinity of each solenoidal mode ;.

6.4 Excitation of cavities
A cavity can be excited:

a) by an electric current inside the cavity. The current may be carried by a probe, a loop, or it may
be a convection current.

b) by atangential £ on the surface of the holes {which is equivalent to a surface magnetic current).

Using (6.61) to (6.64) in (6.36) and (6.38), we can write the expressions for the phasors E (®) and

H(w)
,-(,,u[Hl_—fSi(m)/&)
On wl) [J.-Eidv

2 - i2[1. 12 sen(@) ﬂgl B av
" On o

, | [AxE] -HpdS+[J,, Hudv
- YE, J‘D.nl1 holes — (6.65)
n k’%_kz(Hl-J;gn(m) &] J1E[ av
n

Bo)=- s Bl EdV
VIS SB[ av

- ZEn
n
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J[AxE)-BdS +|Tp-Hy av

= a

H(O)) = _z \Y holes —
v _] J|A.[ av

[T -E,av

] 1 av

_ Zﬁ jmne
n
n

K2 - g2l 14 12 sen(w) ’&
On 0}

_ J[AxE| HpdS+ [T -Hy dv
-3 Hn JOE holes — . (6.66)
n E)LJ .[|Hn| dv

In these expressions we have used the equality (6.22) between electric and magnetic stored energies for
solenoidal modes.

The rigorous expansion coefficients (6.49), (6.50) would yield expressions similar to (6.65)., (6.66),
except that all brackets containing Q-factors would be replaced by 1 (there would be no terms containing Q-

factors), and that the surface integrals, instead of being restricted to the holes, would be extended over the
whole surface S enclosing the cavity.

Excitation of cavities by holes has been treated by Kurokawa [26, 34]. In what follows we shall only
consider excitation by electric currents. The terms corresponding to current excitation in (6.65) and (6.66)
are essentially the same as given by Collin ([8], p. 359) and Van Bladel ([33], p. 299).

The need for the irrotational mode terms has been emphasized many times in the literature. Their
meaning in the particular case of a rectangular cavity has been discussed by Schelkunoff [35]; it has also
been shown by measurements that they are necessary for representing the fields in a rectangular cavity
excited by a probe, especially at frequencies below the first resonance of the cavity [36].

Frequency behaviour of the resonant terms in (6.65)

The last terms in (6.65) behave like

jw[l 17 sen(e) flo, ]
On ol) 1
. - 2
kf—k2[1+—-—l—jgsgn(m) %] .k" + joE
: OSSN ooy
On o

_ 1 . (6.67)

ky

kn :
[j(n+——l+j sgn(o) o m,,l]u

jOE
| Joe
n

The square bracket in the last expression represents the admittance of a paralle! resonant circuit whose two
branches are a capacitance &/k,, and an inductance Wk, having an intemal impedance

____“f;@(‘”)m ik,
n

which is proportional to the surface impedance Z«(®) of the cavity walls.
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In (6.67), the

On ®
term is a small correction which is only important in the vicinity of the resonant frequency ®p; therefore,
we shall replace it by [1- sgn(®)1/@,. The inverse of (6.67) then becomes

2 2 '2
lk". + jog = 1 o . + joE = k',’ ) + joe
jmu(n-f_sgn@) ,-mu(H_](l_f_gn_(se)] jmu[l_ j sen( )
Q” Qn Qn Qn

2 2

-t K e (6.68)
kg,  jou

2 .2 1%
where ky =0, e=—24 (6.69)
1+—

and co;, is the nth resonant frequency of the cavity, as corrected for the finite skin depth.

Again, in (6.68), the real part k;,z /(|(0|].LQ,.) is only important when  is close to 0);,; therefore we
shall replace it by its value for ® = @,. By using (6.69), the inverse of (6.67) is transformed
approximately into

©, 2

€ ’ o,le o w,le
_+M+J’m€=‘L 1+an __Q_?__Lll =|L[l+j tan 4)]
Qn JO : Qn I(Dn’ @ Qn
where we have put tan 6=0, 0 _I‘E'L (6.70)
(o;, o
Finally (6.67) is approximated by
jwu[l 412 (@) ng“(‘”)1 , -%" ] 1 0
z L (6.71)

oy e

o

2 —k2[1+ 1-j sgn(w)

]=1+jtan¢'|m',,
0,

Now, by definition,

lon_,
Q’l Wn

where P, and W, represent the power dissipated in the walls, and the energy stored in the cavity for the nth
solenoidal mode. From (6.22),

W, =2 Welecric = %8 .[Enfdv .

With (6.71) the nth resonant term in (6.65) may thus be written as
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1 E,,jf-E;dv+

E(0)=-—
1+ tan ¢ 2P,

(6.72)

6.5 Beam coupling impedance Zjand Z,

The cavity is excited by the convection current of a charged particle beam; the particles with velocity
v traverse the cavity on the z-axis. The beam current is then a function of (¢ - z/v ) which is supposed to
be modulated at frequency ; therefore the physical current is

()

—_ '_z

jm[t-i) - J
Re |7,(0)-¢ v/t = Re |e/¥.1,(0)e "V

to which there corresponds a complex amplitude
—jhz (O]
Iy =1,(0)e where k= 3 (6.73)

If @ is close to a resonant frequency w, of the cavity, it is sufficient to keep only a single resonant
term of the type (6.72).

Longitudinal coupling impedance

If a particle passes the plane z = 0 at time z,, it will pass the plane z at time = £, + z/0 (neglecting the
change in v during the traversal of the cavity). The real voltage gain experienced by the particle is

. 4
jO)(t +—) . .
Re[E, e \ ldz= Re[e/* [E, e/dz] .
Therefore the complex amplitude of the effective accelerating voltage reads

+o0 'h
Vi= [E, e/Mdz . (6.74)

-—00

Since this formula takes into account the finite velocity of the particles, it automatically includes the transit
time factor.

Strictly speaking, in (6.74) E, depends on the transverse coordinates of the particle, which in general
vary during the cavity traversal. For the sake of simplicity, in the case of ultrarelativistic particles such a
variation is neglected, and the integral (6.74) is taken at fixed transverse coordinates.

In fact, the integral (6.74) is the Fourier transform of E, with respect to z, for a propagation constant

¥ = jh. From the Helmholtz equation (3.5) for the Fourier transform of E, its transverse variation is given
by terms Jm(kcr) cos mo similar to (3.87), with k. defined as in (3.5); thatis

kz_kz_hz__m_z(l__\ﬁ]__izf
c - 2 2 |7 2
By

v c
where B, ¥ here represent the relativistic factors for a particle with velocity v. It follows that

Vi(r. @)= E(Zﬁy)m I [%)[ch cos m@ + Vg, sin mo| (6.75)
m=0
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where Vem, Vs are independent of r,¢ and /,,(z) is the modified Bessel function of the first kind; this
Fourier series is valid as long as r does not exceed the minimum radius of the cavity aperture along the z-
axis. On the z-axis, the m = 0 term is accelerating, whereas the m = 1 term is deflecting.

If the cavity has rotational symmetry about the z-axis, the series (6.75) reduces to a single m-term.
Then, for an accelerating mode,

Vi(r.9)=Vi(r= 0)"0([%) : (6.76)

In this case of rotational symmetry, using (6.75), for any m Vi (r,9) can be deduced from its value at a
single 7 > 0. This is extremely useful in numerical computations, when the cavity has a gap in a beam pipe
of inner radius a: it is then sufficient to compute (6.74) at r = a, where E, vanishes everywhere except in
the gap.

Using (6.73), it should be noticed that (6.74) can also be written as
Vi=——|E,I} dz (6.77)
Ip(0)
With (6.73) and (6.74), the driving term due to the beam reads
§T-Eav = 1,(0) Ey, e dz=1,(0)-Vy, . (6.78)

By definition, the longitudinal impedance seen by the beam is

Vi
Q= Vib_ (6.79)
z[Q] 15(0)

where V, is the effective accelerating voltage induced by the beam itself.
Using (6.72), (6.74) and (6.78) it becomes
. 2
1 | [Ep, cjhzdzl
1+ tan ¢ 2P,

Z =

Remembering (6.70) this may be rewritten as

z[Ql= Rin l ‘
o (@
1+jo, | & 1
On o] o
where (6.80)
)
hz 2
R [Q]JJE"Z i I
n 2P, 2P,

Ry is the longitudinal shunt resistance of the cavity at its n'h resonant frequency; it is usually taken on the
cavity axis. For the beam, in the vicinity of a resonance, the cavity behaves as a parallel resonant circuit.

Remarks:

1) In (6.80), the shunt resistance Ry is defined in terms of the power loss P m the cavi}y walls_for a
given level | VI | of the effective accelerating voltage on the cavity axis. This definition holds irrespective of
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RF source; in (6.80) the RF source is supposed to be the beam, but the same definition applies when the
RF source is an external generator.

2)  The shunt resistance R is defined in (6.80) by the same formula
2
_ Ml

&I—;

which is used in the theory of electric circuits. Although this definition was also used for the first proton
linac [37], the builders of the early electron linacs in Stanford [38] defined the shunt resistance as

2
|Vl
"linac" Ry= ; .

Since they have been widely followed in the Western world (but not in the USSR), one should never forget
that

(linac Ry) = 2 (circuit Ry)

Transverse coupling impedance

In (3.14), if we use B = v/c instead of v in the integral giving the transverse momentumn gained by a
unit charge when traversing a cavity, this integral acquires the dimensions of a voltage, which is called the
effective deflecting voltage produced by the cavity:

Vi =JF ejhz%i

The integral is supposed to be taken in the beam pipe, from a region upstream to a region downstream of the
cavity, at distances far enough from the cavity for the electromagnetic fields to be negligible. Then from the
Panofsky-Wenzel theorem (3.14) we have

V) = _‘ik.f grad  E, -¢/"dz . (6.81)
J

In general grad | E, depends on the transverse coordinates of the particle, which vary during the cavity
traversal.  As in (6.74), such a variation is again neglected, and the integral (6.81) is taken at fixed
transverse coordinates. In this case (6.81) and (6.74) are related by:

- i

vV, = ‘j—kgradJ.(Vll) : (6.82)

For a mode deflecting in the x-direction, E, is zero on the z-axis and reverses sign with x; moreover it
1s approximately independent of y. Its Taylor expansion reads

Ez =x.§£

+ higher order terms . (6.83)

0

For a beam close to the z-axis, (6.81) then becomes

Vo=—t |

_L (9,
x_]k

3 e/"d;  takenonz-axis. (6.84)
29

o

If the beam traverses the cavity at a fixed distance x, off-axis, with (6.73) and (6.83) the driving term reads
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- O,
ox

[T - EqdV = 1,(0)x,]

e g, (6.85)
o

By definition, the transverse coupling impedance seen by the beam is

- V,
Z,|{Qm™|= j—= (6.86)
N
where I5(0)x, is the dipole moment of the beam current.
Using (6.72), (6.84) and (6.85) it becomes
aEnz jhz 2
— e/ dz 2 2
7 -1 1 )j ox |, ke 1 Vir)
* k 1+j tan ¢ 2P, k 1+j tan ¢ 2P,
Remembering (6.70) this may be rewritten as
Kl R
Z,L [Qm—l] = in "
k . ()] |(Dn|
1+ jO, l—_‘ .
" (6.87)
where
2
li.jgrad | E,p| e™dz )
kn o Vil
Ri,[Q]= =
2P, 2P,

R, is the transverse shunt resistance of the cavity at its nh resonant frequency; it is taken on the cavity axis.

At resonance the transverse impedance (6.87) is real and positive; it is in order to achieve this result
that the factor j appears in the definition (6.86).

Moreover, at resonance (6.87) yields the important relation

z,[om™|=k,

m| Ry [Q]  where ky=—2 (6.88)

Some authors use (6.81) without k£ in the denominator of ‘7_L; then, in (6.87) one uses
_ 21
Ri[0m?] =k, [m 72 Rus[Q)

Remarks

1) In(6.87) the shunt resistance R is defined in terms of the power loss P in the cavity walls for a given
level IV, | of the deflecting voltage on the cavity axis. Again this definition holds irrespective of the RF
source; in (6.87) the RF source is supposed to be the beam, but the same definition applies when the RF
source is an external generator. In fact, the latter definition has been used as a figure of merit for RF

separators of high energy particles ([19], p. 268). The same shunt resistance R, appears in the theory of
beam breakup in electron linacs.
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2)  As for the longitudinal shunt resistance, there is a "linac” definition of R} as

2
"linac" R, = u

P

instead of the "circuit" definition used in (6.87). Therefore one should not forget that

| (linacR))=2(circuitR,) |

Finally, it is worthwhile noticing that when used in a deflecting mode, a cavity constitutes an excellent

transverse pick-up for the beam; in that case R should not be too large in order to prevent beam
instabilities.

Example: Transverse impedance due to a gap in a circular vacuum chamber

:l’
a!
___________ I R
.8 0 g
2 2

Fig. 6.2 A gap g in a circular chamber of radius a

An off-axis beam at polar coordinates (r,, @) excites all modes of (6.75). We now consider only the
dipole mode m = 1:

Vi(r.@) = Vi(a)—= E ;cos(cp ¢,) where K=B—I‘; (6.89)

and
sin(g)--g—)
(@)= Vip o3
53)
is the amplitude (with respect to @) of the effective voltage induced by the beam at r = a; the gap induced
voltage Vgap can in principle be computed once the surroundings at r > a are known.

The transverse deflecting voltage is then obtained by applying (6.82) to (6.89):

__1 _Vila) I,(xr)+1y(xr) B
V, = T Vi(a )1( )11(Kr) cos (9-@,)= ;I'ka Io(xa)—lz(m) cos (¢ - 9,)

__1 4 _ Vila) xa K(xr) . (6.90)
=T 39" " w nsa) 07

For ultrarelativistic particles, By>> 1 and «a = ka/(By) << 1; (6.90) then reduces to

V= n( )cos (0—0,) V¢=%%)- sin (¢ —@,)
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hence

Vi=V L +Velp= __jka 1, 6.91)
From (6.86) we obtain
= - 1 Vi) | =
7 [am™]=| - [ i 6.92
s[em] { ka Ib(O)rJ ro (6.92)

where the ratio Vii(a)/[/5(0)r,] is independent of the beam dipole moment Ip(0)7,. It appears that the
transverse kick experienced by a unit charge is in the direction of the beam offset 7.

Multipolar modes

The electric field (6.83) corresponds to m = 1 in (6.75). For m > 1, from (6.74) and (6.75) the
effective voltage Vi, in the n mode has the form

Vin = |E,, €/"dz= K, r" cs(i’rsx(’"‘p) + higher order terms (6.93)

where cos m@, sin m¢ correspond to the two different polarizations of the same mode. For a beam
passing at (7o, Qo) the driving term reads, with (6.78):

J-Enav = 1,(0)-| i, at the beam position|= 7,(0)- K- r™ % m@g) + higher order terms (6.94)
n b In p b n'o

s

Summing up the contributions of the two mode polarizations we obtain

Vin] T - EndV = 1,(0) |Kn|2 "1 [cos(m@)cos(mapg )+ sin(me)sin(meq)]
= 1,(0) [Kf* P17 cos m{e - o) (6.95)

Finally, with (6.72) the effective accelerating voltage induced by the beam reads

2
1 [K

Vie=- -
1+j tan ¢ 2P,

15(0) r™r," cos m(9—@g) (6.96)

By analogy wtih (6.79), the longitudinal coupling impedance is defined as

Vib
1,(0) 7™ 1cos m(@ - gq)

zlQ L2m)=- (6.97)

where L represents the unit of length (to avoid confusion with the multipole number m). Therefore, from
(6.96):

1 I,
1+j tan ¢ 2P,

zu[m:z'"] = m=0,1,2, .. (6.98)

where K, is defined by (6.93). This formula generalizes (6.80) to any m.

A longitudinal impedance expressed in Q can be defined as

zQU?m)

n
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The transverse deflecting voltage is obtained by applying (6.82) to (6.96):

2
S 1k i I S
Vip= j—k T+ m o 2P, 1,(0) mr™ =1 [l,cos m{@—@p) - lysin m{p ‘PO)J (6.100)

[Tro cos (m-1Y¢@- (PO): I‘posm (m— 1)((" ~% )]

The vector inside the square bracket is simple only when m = 0 (it then reduces to T, Jand when m =1 (it
then reduces to 1,,,.

By analogy with (6.86), the transverse coupling impedance is defined as
= Vv
A [9) Scad] BNy SSun. 2 E——— (6.101)
L[ ] g 1,(0) mr™ 1
With (6.100) and (6.98) it reads
5 2m+1]_ 1 “2m) [3 T :
Z_L[Q.L ]=;Z"[QL Hl,cos m(@ —@p)— lysin m((p—(po)] foragivenm  (6.102)

A transverse impedance expressed in Q can be defined as

) Z.L [QL—2m+1 ]

Z,Q)=—% (6.103)
kn
With (6.99) the relation (6.102) then becomes
= k, - - .
Z[Q]= fZII[Q] - [lrcos m(©—@g)- lysinm(o - (po)] (6.104)
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