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ABSTRACT

The concept of describing rf circuits in terms of waves is discussed and
the relationships between commonly used matrices (S, T, ABCD, Y, Z,
H, G) are defined. The signal flow graph (SFG) is introduced as a
graphical means to visualize how waves propagate in an rf network.
The properties of the most relevant passive rf devices (hybrids,
couplers, non-reciprocal elements, etc.) are delincated and the
corresponding Sparameters are given. For microwave integrated
circuits (MIC's) planar transmission lines such as the microstrip line
have become very important. A brief discussion on the Smith Chart
concludes this paper.

1. INTRODUCTION

For the design of rf and microwave circuits a practical tool is required. The linear dimen-
sions of the elements that are in use may be of the order of one wavelength or even larger. In
this case the equivalent circuits which are commonly applied for lower frequencies lead to diffi-
culties in the definition of voltages and currents. A description in terms of waves becomes
more meaningful. These waves are scattered (reflected, transmitted) in rf networks. Having
introduced certain definitions of the relation between voltages, currents and waves we discuss
different matrices such as S-, T- and ABCD-matrix for the description of 2-port networks.
Nowadays the calculation of complex microwave networks is usually carried out by means of
computer codes. These apply matrix descriptions and conversions extensively. Another way
to analyze microwave networks is by taking advantage of the signal flow graph (SFG). The
SEG is a graphical representation of a system of linear equations and permits one to visualize
how, for example, an incident wave propagates through the network. However, for a
systematic analysis of large networks the SFG is not very convenient since the risk of
overlooking a signal path increases rapidly with the size of the network. In a subsequent
section the properties of typical microwave n-ports (n = 1, 2, 3, 4) are discussed. The n-ports
include power dividers, directional couplers, circulators and 180° hybrids. Historically many
microwave elements have been built first in waveguide technology. Today waveguide
technology is rather restricted to high-power applications or for extremely high frequencies.
Other less bulky types of transmission lines have been developed such as striplines and micro
striplines. They permit the realisation of microwave integrated circuits (MIC's) or, if
implemented on a semiconductor substrate, the monolithic microwave integrated circuits
(MMIC's). This paper concludes with a description of the Smith Chart, a graphical method of
evaluating the complex reflection coefficient for a given load. Several examples including the
coupling of single-cell resonators are mentioned.

2. S-PARAMETERS

The abbreviation S has been derived from the word scatrering. For high frequencies, it is
convenient to describe a given network in terms of waves rather than voltages or currents. This
permits an easier definition of reference planes. For practical reasons, the description in terms
of in- and outgoing waves has been introduced. Now, a 4-pole network becomes a 2-port and
a 2n-pole becomes an n-port. In the case of an odd pole number (e.g. 3-pole), a common
reference point may be chosen, attributing one pole equally to two ports. Then a 3-pole is
converted into a (3+1) pole or a 2-port. Rule: for an odd pole number add 1.
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Fig. 1 2-port network

Let us start by considering a simple 2-port network. If Z =0 and Zg = Zp (Zg and Zi.
real) we have a matched load and Uy = U, = Uy/2. The lines connecting the different elements
(Z,Z, Z1) in Fig. 1 are supposed to have no electrical length. Connections with an electrical

length are drawn as double lines or as heavy lines. Now we would like to relate Uy, U;, Us
with g and b.

Definition:

All waves going towards the n-port are a (a1, ay, ..., an). All waves travelling away from
the n-port are b (b1, by, ..., bp). The definition for the direction of the currents (generalization
for an n-port) says that positive currents flow into the network according to Fig. 1. The wave
ay is related to the maximum available power (matched load).

In order to give definitions that are consistent with the conservation of energy, the voltage
is normalized to VZp. Zy is in general an arbitrary reference impedance, but is usually the
characteristic impedance of a line (e.g. 50 Q) and very often Zg = Zp = Z|..

o = U,  _ incident voltage wave (port 1) _ U
27, 7z A .
__Ul _reflected voltage wave (port 1)

b

VZ, VZ,
Note that g, b have the dimension vpower [1].

The power travelling towards port 1 is simply the available power from the source, i.e.

1 e ol T
I __2‘|a1| ‘220‘7 0
@)
o U,z 1,2
P, =5|bl|2 IZ;ZL ‘-‘2—[20
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In the case of a mismatched load Z; there will be some power reflected towards the 2-port
(from Z1)

P ==la,

There is also the outgoing wave of port 2 which may be considered as the superposition of a
wave that has gone through the 2-port from the generator and a reflected part from the mis—

matched load. As we defined a) = Uo/(2VZ,) = U;/NZ,, we can also quote a; = JiVZ,, and
we obtain

. Utz
N7
V% i=12 3.1
p Ui=1Z,
‘ 2VZ,
U, =+Z (a+b) =U +U’
1 i (3.2)
I, =\/—Z_a(ai~bi)= ‘Zo‘
1 A
P =5Re{U‘.I‘.}
1 e ey . .
P =—2-Re{(a,.a,- -bb;)+(ab, - ab] )} (3.3)

with u(z) = Re{Ue/®}.

The relation between aj and b; (i = 1...n) can be written as a system of n linear equations
(aj being the independent variable, b; the dependent variable)

b =S5,a +S,a, 4
or (B)=(S)(A) 4
b, =5ya +5ya

The physical meaning of §1; is the input reflection coefficient with the output of the network
terminated by a matched load (a; = 0). Sy is the forward transmission (from port 1 to port 2),
S12 the reverse transmission and 7, the output reflection coefficient.

Important note: ~ when measuring the S-parameters of an n-port, all n ports must be terminated
by a matched load (not necessarily equal for all ports), including the port
connected to the generator (matched generator).

Using Eq. (3.1) we find (Z = 0)
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b, _Ux—Ixz():ZL'Zo_ _(ZL/ZO)"1

S, ==L = =p= 5.1
" 3 |,,=0 U +1,Z, Z, +7Z, P (ZL/ZO)+1 G-
which is the familiar formula for the reflection coefficient p (often also denoted I).
For the example in Fig. 1, with Zg = Z; = Z;, we obtain:
Z U 2Z
U, =U, —=-1§,, S, = .
22, +Z7 2 2Z, +Z (52)
Z,+Z _U /4 ’
U =U,—= =—=L(1+S,), S =
' °2Z, +2 2( ub Sy 22, +Z

The scattering matrix (S-matrix) introduced in Eq. (4) is a very convenient way to
describe an n-port in terms of waves. The S-matrix is, in particular, very well adapted to
measurements. However, in order to characterize the response of a number of cascaded 2-
ports, it is desirable to use a different description since the S-matrix of several cascaded 2-ports
is not easy to work out in a straightforward manner. We use the so-called T-matrix [2]

b (T, T,Ya
= ©6)
q T, T \b
As the transmission matrix (T-matrix) simply links the in- and outgoing waves in a way
different from the S-matrix, one may convert the matrix elements mutually

AP S
I, =§,- 252.”’ T12='§1'1'
2 21 D
oS oL
Sa Sy

Caution: the T-parameters are indeterminate for Sz; = 0.
The physical meaning of the individual elements of a T-matrix is not as evident as for the

S-matrix, and the T-matrix is rather a mathematical tool for the calculation of cascaded 2-ports.
The T-matrix Ty of m cascaded 2-ports yields (as in [2, 3]):

(T)=(T)-(1;)-(T,) (8.1)

Note that in the literature [2-10] different definitions of the T-matrix can be found and the
individual matrix elements depend on the definition used.

In Egs. (6) and (7), the independent variables are the output waves (port 2) and from this

the waves at the input of the 2-port are worked out. This implies, for the cascade, a matrix
multiplication from "left” to "right", cf. Eq. (8.1). The other definition takes a; and b; as

independent variables.
(bz}_: 7:11 T, (‘EJ (8.2)
23 T, Tzz b,
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- _ﬁ’ - I (8.3)
12 S12
Then, for the cascade, we obtain
Ty =TT, - (%)T) (8.4)

i.e. a matrix multiplication from "right" to "left".
In the following, the definition using Eq. (6) will be applied.

In practice, after having carried out the T-matrix multiplication, one would like to return
to S-parameters

I T,T.
Sy =7+2r S =T, - 172-21
22 2 o)
1 T
Sy = T’ Sp = —;2‘1"
22 2

For a reciprocal network (S2; = S12 or more generally Sj; = Sji) the T-parameters have to meet
the condition (det T =1)

T, -T,T, =1. (10)

So far, we have been discussing the properties of the 2-port mainly in terms of incident
(a) and reflected (b) waves. Returning to Fig. 1 and Egs. (1) to (3) the description in voltages
and currents is briefly carried out. Considering the current /1 and I, as independent variables,
the dependent variables U) and U are written as a Z-matrix:

U =2,1,+2,l,
or (U)=(Z)-(I) (11)
Uy, =21+ 2,1,

where Z;; and Z,, are the input and output impedance, respectively. When measuring Zy;, the

output of the 2-port (or, in general, all other ports) has to be open (no matched load as for the
S-parameter measurement).

In an analogous manner, a Y-matrix (admittance matrix) can be defined as
I, =Y,U,+Y,U2

or (=(Y)-(U) - (12)
I, =Y, U, +Y,U2

Similarly to the S-matrix, the Z- and Y-matrices are not easy to apply for cascaded 4-
poles (2-ports). Thus, the so-called ABCD-matrix (or A-matrix) has been introduced as a
suitable cascaded network description in terms of voltages and currents (Fig. 1)
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U A BYU, Ay A YU,
= = . (13)
A C DA-I, Ay MAp N1
With the direction of /5 chosen in Fig. 1 a minus sign appears for I since -/ of a first 4-pole
becomes /; in the next one.

It can be shown that the ABCD-matrix of two or more cascaded 4-poles becomes the
matrix product of the individual ABCD-matrices [3]

(A B] (A B)[A BJ (A B]
= . (14)
¢ o), \¢c b)ic b), \c¢ p),

In practice, the normalized ABCD-matrix is usually applied. It has dimensionless
elements only and is obtained by dividing B by Zj the reference impedance, and multiplying C
with Zy. For example, the impedance Z (Fig. 1) with Zg = Z; = Z; would have the normalized

ABCD- matrix [3, 4]
A BY (1 2/z,
cp) o 1)

The elements of the S-matrix are related as

_A+B-C-D _ 2detA
A+B+C+D’ 2 A+B+C+D

11

(15)

_ 2 S _—-A+B-C+D
T A+B+C+D’ "2 A+B+C+D

21

1o the elements normalized of the ABCD-matrix. Furthermore, the H-matrix (hybrid) aqd G
(inverse hybrid) will be mentioned as they are very useful for certain 2-port interconnections

(3]
U =H.I +H.U U I
1 1141 12%2 or( 1]:(1.1),{ 1 } (16)
5 =H, I + H,U, I U,
and
I, =G, U, +G_,I I U
1 111 1220r[1 }=(G)( IJ (17)
U, =G12U1+G2212 U, L .

All these different matrix forms may appear rather confusing, but they are applied in
particular, in computer codes for rf and microwave network evaluation. As an example, in Fig.
2, the four basic possibilities of interconnecting 2-ports (besides the cascade) are shown. In
simple cases, one may work with S-matrices directly, eliminating the unknown waves at the
connecting points by rearranging the S-parameter equations.
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Fig. 2 Basic interconnections of 2-ports [1].
a) Parallel-parallel connection; add Y-matrix
b) Series-series connection; add Z-matrix
c) Series-parallel connection; add H-matrix
d) Parallel-series connection; add G-matrix [3].

Figures 3 show ABCD-, S- and T-matrices (reproduced with the permission of the
publishers [3].

Element ABCD-matrix S-matrix T-matrix

1. A transmission line

section
22 + Z°2 zZ2 -7z 2

m = Ch Z sh (2® - Z_%)Sh 222 - L
e 1 o o Ch - g T
[+] ? o _
o I sh o D, 22 - 72 z2 + 72
7 2 _ 2 - -
— L — z 227, (2 - Z,2)sh mr % Ohe T
where Sh = sinhy?, Ch = coshy€and D, = 2ZZ Ch + (27 + Z. %) sh
2. A series impedance :
1 z Z+2, -1 Vz2z, Z2,+2,-12 Z,-7,+72
—{7 }a— 1 1
Z4 ZZ D, b,
—_—r——r 0 1 2/22, z2+2 -2, zZ, -2 -2 Z,+2,~ 7

whereD =2 + 2, + Z,and D, = 2/ Z,Z,

Fig. 3 ABCD-, S- and T-matrices for the elements shown.
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Element ABCD-matrix S-matrix T-matrix

3. Ashunt
admittance 1 0 Y‘ - Y’.’ -y 2Y1Y2 Yl - Y2 -v Yl - YZ -y
RE 1
D.\ Dl
Y 1 2V/Y Y, Y, - Y, —-Y Y, - Y, +Y Y, + Y, +Y
whereD, =Y ~ Y, + Y,andD = 2/ 9192
4. A shunt.connected
open-ended stub \ 0 -1 D, -1 . E"_ T » i’_ .
) 2z Yoz
__1__ DS . o . Zo
iZT 1 D, ~ 1 -1 iz T Lejog T
where T = tanfCandD_ = 1 + 2jZT/Z°
5. A shunt-connected
short-circuited stub z
1 0 1 D‘ + 1 1 i ‘o ; o
Z, 2o 1 2ZT 22T
jT D; . Zo 1—; Zo
b\ Z 1 D, + 1 1 i 327 i 551
p
\ where T = tanfgand D, = — 1 + 2iZ/(Z,T)
6. An ideal transformer - o 2
rl'\ 0 n? -1 ZnW n? + 1 n—l-l

1 1
Zo*! gg o0 1 2 2n
0 1/n "ol 2n 1 — n? n? -1 n? + 1
n:1

7. m-network

Y?—-PY -D 2Y Y

[} o vl

2 <
2Y, Y, Y2+ PY -D

whereD, = Y2 + QY + D, D =YY, + Y,¥; + VY Q=Y ¢V, +2¥;andP =Y, — Y,

i

8 T-network
i Z D -z, 2+ PZ +D 2z.Z, -22+QZ, - D -2 +PZ, + D
P = o o
2y Z, Z3 Z3 RE !
L, 7, & ! Zy 5 2t 2
3 z, 'z, 22z, —2,2-PZ +D z?+PZ, - D Z,;5 +QzZ, + D

whereD_ = Zog +QZ, +D,D=2/Z,+ 2,2, + 2,Z,. Q=2 +2, ‘* 2z, andP = 2, — Z,

9 A transmussion hine junction

! 0 Z, = Z, 2T Z, zZ, + 2, Z, - 4
00— 1 _1.

Z, Z2 D, D,

0 ! 2vZZ, Z, 2 Z, - %, 2+ 2
whereD = Z, + Z,andD = 2,/ 22,
10. An a-db attenuator

A+B 2 (A - B) 0 B —A 4}

D © 2

. o d8 2
A-B A-+B B 0 0 A
2Z 2

where A = 10920 and B = 1/A.

Fig. 3 (continued) ABCD-, S- and T-matrices for the elements shown.
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3. SIGNAL FLOW GRAPH (SFG)

The SFG is a graphical representation of a system of linear equations having the general
form:

¥)=(M)(X)+M")(Y) (18)
where (M) and (M’) are square matrices with n rows and columns, (X) represents the n
independent variables (sources) and (Y) the n dependent variables. The elements of (M) and

(M’) appear as transmission coefficients of the signal path. For practical work with S-
parameter Eq. (18) sometimes (no signal loops) reduces to

(¥)=(M)X) or (B)=(5)(4) . (19)

The purpose of the SFG is to visualize physical relations and to provide a solution
algorithm of Eq. (18) by applying a few rather simple rules:

1. The SFG has a number of points (nodes) each representing a single wave g;j or b;.

2. Nodes are connected by branches (arrows), each representing one S-parameter and
indicating direction.

3. Anode may be the beginning or the end of a branch (arrow).

RS

Nodes showing no branches pointing towards them are source nodes. All other nodes
are dependent signal nodes.

Each node signal represents the sum of the signals carried by all branches entering it.
The transmission coefficients of parallel signal paths are to be added.

The transmission coefficients of cascaded signal paths are to be multplied.

[+ < BN BN e NV )

An SFG is feedback-loop free if a numbering of all nodes can be found such that every
branch points from a node of lower number towards one of higher number.

9.  Afirst-order loop is the product of branch transmissions, starting from a node and going
along the arrows back to that node without touching the same node more than once. A
second-order loop is the product of two non-touching first-order loops, and an nth-order
loop is the product of any n non-touching first-order loops.

10. An elementary loop with the transmission coefficient § beginning and ending at a node N
may be replaced by a branch (1-S)-! between two nodes Ny and N3, going from N, to
N2, Nj has all signals (branches) previously entering N, and N is linked to all signals
previously leaving from N.

In order to determine the ratio T of a dependent to an independent variable the so-called
"non-touching loop rule", also known as Mason's rule, may be applied [11]

- Bl-2® + 2Q) -]+ B1- 2L -]
1-ZLQA)+ZLQ2)-ZL3) +---

(20)

where:
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- P, are the different signal paths between the source and the dependent variable.

- ZIL(1)® represents the sum of all first-order looﬂ;:s not touching path 1, and ZL(2)M is
the sum of all second-order loop not touching path 1.

Analogously T1,(1)) is the sum of all first-order loops in path 2.

- The expressions XL(1), £L(2) etc. in the denominator are the sums of all first-, second-,
etc. order loops in the network considered.

As all this may sound complicated, let us look at a few examples.

Examples

We are looking for the input reflection coefficient of a 2-port with a non-matched load pL
and a matched generator (source) (ps = 0) to start with. p, ps are often written as I'., I's.

Ps ‘\ S S22 PL
N —a
b, Sr2 az

Fig. 4 2-port with non-matched load
By reading directly from the SFG (Fig. 4) we obtain

b,
Zl =5+ 5, 1_g;p S, D)

L

or by formally applying Eq. (20) (Mason's rule)

b Sn (1 - Szsz) + SleLSIZ

b
4 1-5xp,

(22)

As a more complicated example one may add a mismatch to the source (ps = dashed line
in Fig. 4) and ask for by/bs

b, S (l - Szzps) + 8,055,

by 1- (Sl WPs+ 5P + SlszSnpS) +8,,0s52P;1 .

23)

As we have seen in this rather easy configuration, the SFG is a convenient tool for the
analysis of simple circuits [8, 12]. For more complex networks there is a considerable risk that
a signal path may be overlooked and the analysis soon becomes complicated. When applied to
S-matrices, the solution may sometimes be read directly from the diagram. The SFG is also a
useful way to gain insight into other networks, such as feedback systems. But with the
availability of powerful computer codes, the need to use the SFG has to some extent been
reduced.
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Element

a
-——
b

a) Passive one-port

~

a
H o

b) Active one-port

d;

‘-——
—
2

0,
—
=B
b 1
c) Passive two-port

(Ll Z. Z 02

— -
- —_—
b1 b?

d) Lossless line (length £) matched

S=( 0

S-matrix
g o———
\ k6
b= ria
b o———
1
by b
b = bq + Tja f[ g
S
a9 d b?
S1 Sz S $n
S = So1 See ) &,
bl‘ S 2
2
a, o—p———o0b,
ST

o~ 181

3
S11 S
TT S =1 8o SZ2
‘l: —_—12 S31 Ss2
e) Passive 3-port
n
:\ Su Sie
N S21 S22
1 bl s =
3 .. ..
Snl Snz
2

f) Passive n-port

Fig. 5 SFG of different multiports (reproduced with the permission of the author [12])
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As a further example to exercise the methods mentioned so far
- elimination of waves at connecting points,
- T-matrices,
- SFG,

the following problem is suggested:

Cascade of two 2-ports (Sa), (Sg). Work out S11aB, S12a8, S21AB and S224s.

4 PROPERTIES OF THE S-MATRIX OF AN N-PORT

A generalized n-port has n? scattering coefficients. All §j; may be independent and
different. In practice, due to symmetry, reciprocity, etc. the number of independent Sjj may be
much smaller. In the case of transmission symmetry (Sjj = Sji) the n-port is reciprocal.
Reciprocal n-ports are structures made from resistors, inductors, capacitors and transformers.
Examples for non-reciprocal networks are: amplifiers, structures with biased ferrites and
charged particle currents (travelling wave tube, beam transfer function (BTF) between pickup
and kicker; Sjj # Sji). The elements on the main diagonal of the S-matrix (Sjj, i =1 ... n) are
the input reflection coefficients (all other ports terminated by a matched load).

A passive n-port (for any external load) does not emit, on average, more power than it
absorbs. For the lossless case the S-matrix becomes unitary, i.e.

(5Y(®)=0) or (5 =(s)" 4.1)
This means for n = 2
oS S[* LY
S, SuASy S,) 01
ISuf +1S.,[F =1 _ (24.2)
|SIZ|2+|S22|2 =1 (24.3)
5181 + 558, =0 (24.4)

With |S11]-1812l = 18211182 | from Eq. (24.3) and

—arc$,, +arcS,, =—arcS,, +arcS, t 1 (24.5)

we obtain

|Su| = |522|’ |512| = |521|

ISn| = Vl - |S12|2

Any lossless 2-port can be characterized by one modulus and three angles.

(25)
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S-parameters are complex and frequency dependent. They change their phase when the
reference plane is moved. Often the S-parameters can be determined only from geometrical
symmetry and, if the circuit is lossless, using the relgﬁon (SHT.(S)=1.

Examples of S-matrices of 1- and 2-ports:

1-port
Ideal short Si1 = -1
General short S;; = -let
Ideal termination S;91 =0
General load 0 < ISil =1
0 < arcS;; <
Active termination (reflection amplifier) S11} > 1
2-port
a) Homogeneous line (length £) S11 = S22 =0
Si12 = S =e¥
Lossless case IS211 = I1S12l =1
b) Ideal phase shifter S11 = S22 =0
S 12 = e'j¢12
Reciprocal phase shifter 012 = 621
Non-reciprocal phase shifter (gyrator) ¢12 - $21 =T

NB: ($¥)T(S) = 1 does not apply because Eq. (24.5) is not met for the gyrator,
which is lossless but non-reciprocal.

c¢) Ideal, reciprocal attenuator

Example: 01 = 40 dB — 15531 =0.01

d) Non-reciprocal attenuator, ideal isolator 513

The isolator has losses!

e) Ideal amplifier

3-port

S11 = S22 =0 ,
Si2 = S21 =IS12led®
0 < |ISn <1
«[dB] = 10log(1/iSxuP) =-20 log| S|
= Sy =0
IS21] = 1
IS121 = O

S11 = S22 =0
IS211 >1
IS12l = O

Several types of 3-ports are in use: e.g. power divider, circulator, E- and H-plane, "T"-
junctions. Applying the condition ($*)T(S) = (1) leads to a set of equations

1S4 +|Saf +1Sxf =1,
|Sl,,|2 + |522|2 +|S32|2 =1,

1S,/ +[85f +I84f =1,

5;1512 + 52‘1522 + S;ISSZ =0
5518y, + 551523 + 5;1333 =0 (26)
S8 + 522523 + 5;2533 =0
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and it can be shown that there is no lossless, reciprocal 3-port matched at all ports. The
resistive power divider: matched at all ports, reciprocal, lossy. The 3-port circulator is
lossless, matched at all ports, non-reciprocal. In other words: a reciprocal, lossless 3-port
cannot be matched at all ports, or a lossless 3-port matched at all ports cannot be reciprocal.

Let us look at a few examples.

?

? | |
i h 1 e
1 |
R EEE
S G T
| @- =+ _
i
|
- T-% 7 E-PLANE

Fig. 6 Hjo waveguide "T"s; H-plane, E-plane.

Applying Eq. (26) in Fig. 6, symmetry considerations and appropriate reference planes,
one finds

1 -1 A2

Sy =% -1 1 W2 (27.1)
V2 V2 0
1 1 2

s, =§ 1 1 2 27.2)
V2 20

Now we consider the ideal circulator and isolator. A signal entering the ideal circulator at
aportn (n =1, 2, 3) is transmitted to the next port in the sense of the arrow and l.cavcs the cir-
culator as a wave bp4;. The S-matrix of the circulator is given (with port numbering according
to Fig. 7) as

0 01

S. =100 @8

2 010

1 3
Fig. 7 3-port circulator and 2-port isolator
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A circulator, like the gyrator and other passive non-reciprocal elements contains a volume
of ferrite. This ferrite is normally magnetized into saturation by an external (sometimes
internal) maﬁnetic field.. The magnetic properties of a saturated rf ferrite have to be
characterized by a p-tensor. The elements of this tensor are complex and strongly dependent on
the bias field (resonance absorption). They represent the p+ and p- seen by a right- and left-
hand circular polarized wave (with respect to the bias field) traversing the ferrite (Fig. 8). All
elements of the isolator (= circulator with absorber at port 2) (Figs. 9 and 10) are zero except
13, i.e. transmission from port 3 to port 1, which is 1.

32 1.5 003
x =10 GHz T
I 24 4 T l.‘z v
e -1 Xy u
T
16 002
8 1
0 001
105 5 A ‘
2:10 210 &
- 8 Hc -
H,—
-16 0 . v 0
10°  210°  310° A 410°
- SA - SA MH2
%-239 10 I,71,(1:0,031 =AHO:I,5.9 10 m ,7:0'245 Al_m
Fig. 8 Complex permeability p+ p- for circularly polarized waves in a microwave ferrite
H
3
. / |
N — <&
NG >~
/@9
Ferrite (§}
2
Fig. 9 Waveguide circulator
Inner conductor Ferrite disks Outer conductor

Fig. 10 Stripline circulator
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It is interesting to note that all non-reciprocal elements can be made from an ideal gyrator
and some other passive, reciprocal elements (often a 4-port T-hybrid or magic tee), e.g.
Faraday rotation isolator, Fig. 11. Note that the frequency range of ferrite-based, non-
re%i]procal elements extends from about 50 MHz up to optical wavelengths (Faraday rotator)
[13].

Magnet Ferrite
' e

Fig. 11 Faraday rotation isolator
Exercise

Work out the S-matrix of a symmetric 6 dB resistive power splitter. Indicate the value of
the inside resistor (Zo = 50 Q). What is the S-matrix of a symmetric lossless coaxial Y-piece?

The S-matrix of a 4-port

As a first example let us consider a combination of E-plane and H-plane waveguide "T"'s
(Fig. 12). This configuration is called a Magic "T" and has the S-matrix:

0 0 1 1

(o0 1 -
S=7 . (30)

1 1.0 0

1 -1 0 0

Fig. 12 Hybrid "T", Magic "T", 180° hybrid. Ideally there is no crosstalk
between port 3 and port 4 nor between port 1 and port 2.
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The coefficients of this S-matrix can be found by using the condition SHT- S) =1
(losslessness, reciprocity and mechanical symmetry). A lossless, reciprocal 4-port may be
matched at all ports and the reference plane can be chosen such that the very simple S-matrix
(Eq. (30)) results. In practice, however, certain measures are required to make the E/H-"T"
magic such as small stubs in the center of the tee. Today, T-hybrids are often produced not in
waveguide technology, but as coaxial line and printed (planar) circuits (using also coaxial line
transformers). They are widely used for signal combination or splitting in pickups and kickers
for particle accelerators. In a simple vertical-loop pickup the signal outputs of the upper and
lower electrodes are connected to arm 1 and arm 2, and the sum (2) and difference (A) signals
are available from the H arm and E arm, respectively. This is shown in Fig. 13 assuming two
generators connected to the collinear arms of the magic T. The signal from generator 1 is split
(equal amplitude) into the E and H arm (for A and ¥ ports). The signal from generator 2
propagates in the same way. We see that cancellation is produced at the A port (provided that
both generators have equal amplitude and phase), and the sum signal shows up at the X port.
Note that the bandwidth of a waveguide magic "T" is around one octave or the equivalent Hjo-
mode waveguide band. Broadband versions of 180° hybrids may have a frequency range from
a few MHz to some GHz.

Another important element is the directional coupler. A selection of possible waveguide
couplers is depicted in Fig. 13.

—_—— el ——

+
rrrryy

Wy —N o~ —

Fig. 13 Waveguide directional couplers; single-hole, double-hole and multiple-hole types.

There is a common principle of operation for all directional couplers: we have two trans-
mission lines (waveguide, coaxial line, strip line, microstrip), and coupling is adjusted such
that part of the power linked to a travelling wave in line 1 excites a (single) travelling wave in
line 2. The coupler is directional when the coupled energy mainly propagates in a single travel-
ling wave, i.e. there is no propagation in two directions.

The single-hole coupler (Fig. 13), also known as a Bethe-coupler, takes advantage of the
electric and magnetic polarizability of a small (d << 1) coupling hole. A propagating wave in
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the main line excites electric and magnetic currents in the coupling hole. Each of these currents
gives rise to travelling waves in both directions. The electric coupling is independent of the
angle a between the waveguides (also possible with two coaxial lines at an angle a). The
magnetic coupling depends on . For o = 30° the propagating waves cancel in one direction
and add in the other. The physical mechanism for the other couplers shown in Fig. 13 is
similar. Each coupling hole excites waves in both directions, but the superposition of the
waves coming from all coupling holes leads to a preference for a particular direction (with
respect to the wave in the main line).

Example: the 2-hole, Ji4 coupler

The coupled wave leaves at port 4, the incident wave enters at port 1 (forward coupler).
Optimum directivity is only obtained in a narrow frequency range where the distance of the
coupling holes is roughly A/4. For larger bandwidths, multiple hole couplers are used. The
holes need not be circular; they may be slots (longitudinally or transversely orientated).

Besides waveguide couplers there exists a family of printed circuit couplers (strip line,
microstrip) and also lumped element couplers (like transformers). To characterize directional
couplers, two important figures are always required, i.e. coupling and directivity. For the
elements shown in Fig. 13, the coupling appears in the S-matrix as the coefficient

|Sw} =[8y|= |S42| =S|
with o = -20 log|S13] [dB] being the coupling attenuation.

The directivity is the ratio of the desired coupled wave to the undesired (i.e. wrong
direction) coupled wave, e.g.

a, =20 logM direcrivity [dB].
1Sl

Practical numbers for the coupling are 3 dB, 6 dB, 10 dB, and 20 dB with directivities
usually better than 20 dB. Note that the ideal 3-dB coupler (like most directional couplers)
often has a m/2 phase shift between the main line and the coupled line (90° hybrid). The
following relations hold for an ideal directional coupler with properly chosen reference planes

Sy =522=533 =84, =0

S =81, =S84 =Sy (3L.1)
$3 =85 =5, =5,
S =81, =85 =85

0 VI=ISsf £1S,] 0

1-]s,f 0 0 +1S,4|
S= (31.2)

+51S,,| 0 0 V1 ~18.sf
0 85 1-lf 0

and for the 3 dB coupler (7/2-hybrid)
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0 1 +j 0
111 0 0 #%j
g =L 31.3
o2l 0 0 1 (31.3)
0 % 1 0

As further examples of 4-ports, the 4-port circulator and the one-to-three power divider
should be mentioned. In general, one must keep in mind that a port is assigned to each
waveguide or TEM-mode considered. Since for waveguides the number of propagating modes
increases with frequency, a 2-port will become a 2n-port at lower frequencies (Fig. 14). Alsoa
TEM line beyond cutoff is a multiport. In certain cases modes below cutoff may be taken into
account, e.g. for calculation of the scattering properties of waveguide discontinuities, using the
S-matrix approach..

There are different technologies for realizing microwave elements such as directional
couplers and T-hybrids. Examples are the stripline coupler shown in Fig. 15, the 90°, 3-dB
coupler Fig. 16 and the printed circuit magic T Fig. 17.

T
Hip, Hag ® “E—:i
o Hu S port
N R A Hy | within given
- H frequency
(:l{-——-—m range
% Ho
Z]
TEM (coaxial line) Ya
He Hi 74
waveguide modes | | F T 1T 1TTT11
Feren =0 ﬁ“m fouy Fena e ’
number of ports | + | 2 |3]4Kk4sl718
Fig. 14 Example of a multiport
0

!

1):5 // T%‘ 72 3
10 & —
“f 2 1 T\
15

0 05 10 15 2.0

f/fy—>

Fig. 15  Stripline directional coupler (2-stage); curve 1) 3-dB coupler, 3) 10-dB
coupler, 2) broadband 5-dB coupler (cascaded 3-dB and 10-dB coupler) [2].
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Fig. 16 90°, 3-dB coupler [2]

0

m\\ /A
o N/

08 03 10 12 14
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Fig. 17 Magic T in a printed circuit version [2]

5. BASIC PROPERTIES OF STRIPLINES, MICROSTRIP AND SLOTLINES
5.1 Striplines

A stripline is a flat conductor between a top and bottom ground plane. The space around

this conductor is filled with a homogeneous dielectric material. This line propagates a TEM

mode. With the static capacity per unit length, C’, and the permittivity of the dielectric, &, the
characteristic impedance Zp of the line is given by

¢ 1 (34)
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Fig. 18 Characteristic impedance of striplines [14]

For a mathematical treatment, the effect of the fringing fields may be described in terms of static
capacities (see Fig. 19) [14]. The total capacity then becomes
(35)

Cor =Cp+Cpy +C +2C,,.

222227222 4

.l.cp/
- [f, % | Cf, %
~Q - 1 -
~ Crasd | L% 2X%Crz C.
S [w
e
W pr/zzzzzzz0240444440/0//7

Fig. 19 Design, dimensions, and characteristics for offset
center-conductor strip transmission line [14]

For striplines with an homogeneous dielectric the phase velocity is the same, and

frequency independent, for all TEM-modes. A configuration of two coupled striplines (3-con-
ductor system) may have two independent TEM-modes (odd mode, even mode, cf. Fig. 20).
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Fig. 20 Even and odd mode in coupled striplines [14]

The analysis of coupled striplines is required for the design of directional couplers.
Besides the phase velocity the odd and even mode impedances Zo and Zge must be known.

94.15Q/+e
Z, = (36)
w/b +tn2 7 + (1 7)- zn({1 + tanh]( 7:/2)(s/b)]})
_ 94.15Q/+€ 37)

wib+ tn2/m + (1 m)- en{{1 + coth[(x/2)(s/b)]} )

Equations (36) and (37) are also known as Cohn nomographs in a graphical presentation and
are valid as a good approximation for the structure shown in Fig. 21. For a quarter-wave
directional coupler (single section in Fig. 21a) very simple design formulae can be given

Zy = 1+C,
1-C,
z, = 1-C,
1+C,
Z, =+[Z,Z,

Coupling [dB] =20 logC,. (38)

Fig. 21 Types of coupled striplines [14], strip width = W, spacing = S
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Note that couplers of this type are backward couplers (in contrast to the 2-hole waveguide
coupler), i.e. the coupled wave leaves the coupler in the opposite direction to the in-coming
wave.

The stripline coupler technology is rather widespread by now, and very cheap high
quality elements are available in a wide frequency range. An even simpler way to make such
devices is to use a section of shielded 2-wire cable. Later in this course [15], we will hear in
more detail about such couplers as they play an important role in beam diagnostics and for
stochastic cooling.

5.2 Microstrip

A microstripline may be visualized as a stripline with the top cover and top dielectric layer
taken away (Fig. 22). Itis thus an asymmetric open structure, and only part of its cross section
is filled with a dielectric material. Since there is a transversely inhomogeneous dielectric, only a
quasi-TEM wave exists. This has several implications such as a frequency-dependent
characteristic impedance and a considerable dispersion (Fig. 23).

@ Wave
metallic sirip: p / Oeit

T -1 roundplune: p
7 o7 Cou
AT s
I/' Cr,lanéax
2. & otf

Fig. 22 Microstripline a) Mechanical construction, b) Static field approximation [16].

An exact field analysis for this line is rather complicated and there exists a considerable
number of books and other publications on the subject [16, 17]. Due to the dispersion of the
microstrip, the calculation of coupled lines and thus the design of couplers and related
structures is also more complicated than in the case of the stripline. Microstrips tend to radiate
at all kind of discontinuities such as bends, changes in width, through holes etc.

With all the disadvantages mentioned above in mind, one may question why they are used
at all. The main reasons are the cheap production, once a conductor pattern has been defined,
and easy access to the surface (integration of active elements). Microstrip circuits are also
known as MIC's = Microwave Integrated Circuits. A further technological step is the MMIC
(Monbolithic Microwave Integrated Circuit) where active and passive elements are integrated on
the same semiconductor substrate.

In Figs. 24 and 25 various planar printed transmission lines are depicted. The IiCrostrip

with overlay is relevant for MMICs and the strip dielectric wave guide is a "Printed Optical
Fibre" for millimeter-waves and integrated optics [17].
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Fig. 25 Various transmission lines derived from microstrip [17]
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5.3 Slotlines

The slotline may be considered to be a dual structure to the microstrip. It is essentially a
slotin the ground plane metallisation of a metallized dielectric substrate as shown in Fig. 26.
The characteristic impedance and the effective dielectric constant exhibit similar dispersion
properties to those of the microstripline. A unique feature of the slotline is that it may be com-
bined with microstriplines on the same substrate. This, in conjunction with through holes,
permits interesting topologies such as pulse inverters in sampling heads (e.g. for sampling

scopes).
®

E-field

f——$§/2 \
Substrate:

at r—3 £, tan 65<< 1

Fig. 26 Slotlines a) Mechanical construction, b) Field pattern (TE approximation),
¢) Longitudinal and transverse current densities, d) Magnetic line current model [16]

Figure 27 shows a broadband (decade bandwidth) pulse inverter. Assuming the upper
microstrip to be the input, the signal leaving the circuit on the lower microstrip is inverted since
this microstrip ends on the opposite side of the slotline compared to the input. Printed slotlines
are also used for broadband pickups in the GHz range (e.g. Stochastic Cooling) [15).
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Fig. 27 Two microstrip-slotline transitions connected back
to back for 180° phase [17]

6. APPLICATION OF THE SMITH CHART

A useful and very common tool for both measurements and calculations on rf components
is the Smith Chart (S.C.) shown in Fig. 28. It indicates in the plane of the complex reflection

coefficient p the corresponding values of the complex terminating impedance Z =R + jX
(Fig. 28a).

zZ-2,

= 39
P Z+2Z, &)
or in terms of the admittance Y = G + jB (Fig. 28b)
Y-Y,
=— 40
Y+Y, @0

e Reactance Co,."p

\\\@
>

Pcitive Reactance C°‘“9

a)

Fig. 28 Construction of the Smith Chart a) Constant
resistance circles b) Constant reactance circles
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Generalized circles (straight line = circle with R = oo convert into generalized circles,
when going from the Z-plane to the p—plane). In practice one transforms a circle from the Z-
plane with three points (but not the center) into a circle in the p—plane. Note that indicating a
coordinate in the Smith Chart without specifying Zg or Yy is meaningless since the S.C. is
mostly normalized to Zg. Changing the normalization from Zg to Yg (required when adding
admittances) does not change p, but the system of circle coordinates is turned by 180°.

Combining Figs. 28a and 28b produces the Smith Chart in the p-plane (Fig. 29).

o o
Al A e

-
|

o] |
24 2 % N

139 sl g9~
umvmwu!(;;)

Fig. 29 Smith Chart

All real and imaginary values on the Smith Chart are normalized to a characteristic
impedance or admittance Zy or Ype.g.

R X ... G R
z=r+ jx=—+j—andy=j+jb=—+j—
0 0 YO YO
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Exercise: Imagine a Cartesian coordinate system superimposed and visualize a few important
reference points.

p=0 R/Zo=1 X/Zo=0 Matched load

p=-1 R/Zy=0 X/Zy=0 Short

p=+1 R/Zozoo = oo Open

p=+ R/Z,=0 X/Zy = +1 Shorted A/8 line (Zo)
p=-j R/Z,=0 X/Zo= Shorted 3 /8 line (Z)

The loci of constant real and imaginary part are obtained from Egs. (39) and (40)
(conformal mapping).

As a further exercise one may read modules and phase of p for a few impedances:

Z;=25Q Zy=50Q
Z,=100Q Zy=50Q
Z3=50+j50 Q Zy=50Q Try also parallel and serial
Z4=50+3i50Q Zo=100Q combinations of Z; ... Zg
Zs=+j200 Q Zy=50Q

Zs=100-j25Q  Zo=100Q

Impedances are added in an S. C. normalized to Z when they are connected in series.
Admittances are added in an S. C. normalized to Yq (parallel connections).

Adding a lossless line to a given impedance (length of the line = £/A means turning p
clockwise by 4r x £/A. i.e. n/2 for \/8, « for A4, etc. The modulus of = does not change after
a transformation over a lossless line which if it is of the A/4 type is often used as a transformer

(A/4 transformer) and with Z; = termination impedance of the line and Z; = input impedance we
obtain

Z,Z,=Z} (\/4 transformer). (41)

However, for practical applications the bandwidth of a single A/4 transformer is often not
sufficient. Thus multistage line transformers are used which, treated in the Smith Chart means
renormalization for each line impedance.

Transformation over a lossy line leads to a logarithmic spiral which is not easy to draw
(pointwise construction). Consider a lossy parallel resonance circuit (R, L, C) in the complex
Z-plane. The locus of impedance is a circle symmetric to the positive real axis, intersecting at
Z=0(f=0,%)and Z =R (f = fy). This circle can be transformed easily into the p-plane
(conformal mapping). Use symmetry to the real axis and Z = R into p = -1 and p = (R-Zg)/
(R+Zyp). In practice the transformation of the point Z = 0 is unrealistic because f = 0 or e,
Thus one should use some other convenient frequency.

The dashed line in Fig. 30 can be seen directly on a vector network analyzer equipped
with a polar display. Numbers of interest are

Unloaded Q@ = Q,
External Q =Q, :f, = res. frequency
Loaded Q = Q,
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1 1 1
0. 0 0
L Xt (42)
S
Q Af (3dB)
Referring to Fig. 30 we obtain
Qo =f,/(f; —f¢)
Q =fo/(f, = £,) “3)
Qex =f,/(f; —1,)

Figure 30 shows the resonator in the "detuned short position”, i.. the impedance of the
resonator far from fy approaches zero and f, f; are "half-power" points (intersection with
straight lines connecting p = 0 and p = 1j respectively. For the external Q (f3, f4) we must
turn the locus of the resonator into "detuned open position" (A/4 transformer). This produces
an intersection with the constant reactance circle Z = Y/Zy = 1j. Finally the points fs, fs-(Qo;
Reavity = Xcavity) are read from the intersection of a cavity with two circles centered at 1j and

having a radius of V2.

There are three ranges of the coupling factor § defined by
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and

QL -_—_QL (44)

This then allows us to define:
Critical Coupling: B = 1, Q. =Qg/2. The locus of p touches the center of the S.C.

Undercritical Coupling: (0 <B < 1). Locus of p in the detuned short position is left of
the center of the S.C.

Overcritical coupling: (1 < < «). The center of the S.C. is inside the locus of p.

Caution: when using a network analyzer with a Cartesian display for |p| one cannot decide
from |p| only whether one has over or undercritical coupling; the phase of the complex
reflection factor p is required for this.

- Undercritical coupling = phase swing < 180°
- Critical coupling => phase swing = 180°
- Overcritical coupling = phase swing > 180°.
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