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ABSTRACT

In a simple 1f system of a source, a transmission line and a cavity acting
as a load, the first concern of the systems engineer would be to match
the elements for maximum efficiency. This problem is discussed using
transmission line theory. Quarter-wave matching and techniques for
measuring mismatches and terminal impedances are described. The
characteristics of cavities and techniques for their measurement are also
covered with special reference to the types of cavities used in particle
accelerators.

1. TRANSMISSION LINE

Transmission lines are widely used in high-frequency applications. In general they
comprise two conductors separated by a dielectric e.g. a co-axial line, parallel plates, twin
feeders, shielded pairs, etc. An analysis can be based on lumped-circuit parameters, or
differential equations can be derived from Maxwell's equations. In the analysis below, counter-
flowing currents are considered in the two conductors under the influence of distributed, series
inductors and shunt capacitors between the conductors. First a lossless line is considered and
then one with attenuation. A complete analogy also exists with wave propagation in
waveguides (E =V, H =1).

1.1 Line without attenuation -
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Fig. 1 Transmission line without attenuation

Consider the application of Faraday's law to the loop 1-2-3-4 shown in Fig. 1(b) formed by an
elementary length dx of transmission line. When there are no losses

V(x) . V(x) , P |
S V()= dv= - )

§E-dZ=V(x)+

where @ is the magnetic flux within the loop due to the currents in the lines. Let a prime
indicate the value per length of a distributed parameter so that @’ = L’J where L’ is the
inductance per length. Substitution in (1) gives

GAEY dx = —L’a—ldx , which simplifies to v —L'g . 2)
ox ot X ot
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The charge g’ stored per length by the distributed capacitance C’ will be
q=CV. (3)

Thus over a distance dx, and with the use of the continuity equation

aq' a ’
N y=2(CV) &
ox at( )
o v
L g=c Lax
x ¥
A _ o

x o (4)
Differentiation of the line equations (2) and (4) gives
9’1 o1 _ 191

9 sl
ox? o2 V% or ©)

o’V o’V _ 1 9%V

o= %

e a2, or ©
where v, = (L'C’)12. The solutions of (5) and (6) are well-known and can be seen to be

special cases of the general solutions given in the next section (7) and (8) and Vpr Will be seen
to be the phase velocity of the wave on the line.

1.2 Line including attenuation
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Fig. 2 Transmission line with attenuation

Let G’ be the transverse conductivity per length, and R’ the resistance per length. Faraday's
Law can be applied to an elementary section of line, as in the previous section to give more
general formulations of (2) and (4). Hence,
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which leads to
o’V % %1%
—='C—+(C'R+L'G')—+G' RV . (62)
ox’ or’ ( ) or

Substitution of the trial solution V = V,, €l®-% yields,

¥ = t4/(R +HoL' G +ioC'), (Propagation constant) (7)

which can be split into real and imaginary parts to give,

Y=a+ik
1 pr vy ¥l ‘2 272 2 2,2 (8)
o =140.5(G' R —0’L'C’ )+ 0.5y(R? +’L"* J(G* +0°C"?)
k=+,0.5(@L'C'=G'R )+ 0.5(R* + 0*C* (G +0*C?)
so that
V(x,t) = Ve e ™8 4y, %™ )

This solution is a superposition of forward and backward travelling waves of frequency ® with
attenuation . The amplitudes V; and V; are complex (phasors) in order to account for the

initial phase of the waves. The phase and group velocities and wavelength, Vs, v, and A, are
related in the usual way by,

() do 2n
Vy=—, V,=—), A=—. 10
Pk f dk k (10)
The corresponding solution for the current is found by substituting V(x.t) into (4a):
V ; V, ;
I x,t =—1'e—m .et{u)l-h) __2._ea.x ‘e‘(w+h) )
(x0=7, Z a1
The characteristic impedance of the line is called Zj and is given by,
z,=ho Yoo KBGO (12)
I I, VG'+ioC

In general Z, will vary with frequency so that Z, = Z,(®) and k = k(w), that is losses lead to
dispersion!
For the special case of the lossless line G’ = R" = 0, so that

1 dw

VP,l =_JT’_E , Vg =sz=vp,, (10&)

zZ = % y=ioNDC =ik . (12a)
and (9) and (11) become the main equations, which will be used in the following sections,
V(x,t)= Vg™ 4 Vel (13)
vV . V, .

I(x,t) = —L g™ - L gilonh), 14

(x,t) Z Z (14)
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1.3 Line terminated by a load

In all that follows a lossless line will be considered and the time variation € will be
omitted since it appears equally in all terms.

%
V,
z; z, z;=-L
I
p—— X
G\ >

Fig. 3 Transmission line terminated by a load

When a line has a terminal load impedance Z;, a boundary condition can be established by
summing the forward and backward wave voltages and currents at the terminal load (x = s),
dividing them and equating the result to the terminal impedance Z; .

V(s)=V, =Ve™ +V,e* =V* +V~ (15)
I(s)=1, =Y‘°Y_ :
Z, 2Z, (16)
Since V = Zj];
vi=lya+Zey and v=iva-%) . an
2 Z, 2 Z

A reflection factor p is defined at the load in terms of the forward and backward waves and this
can then be related to the terminating impedance by (17), so that,

V'V, g Z,-Z,
—=Eke=t—0 (18)
ViV Z,+2,

A corresponding transmission coefficient can also be defined. By measuring the complex

reflection coefficient p, the complex Z; can be found. It is useful to note some particular
cases:

(@) Short-circuited line: Z; =0, Ip| = 1, ¢ = & (phase shift between V; and V)
V(x)=2V*e™ cos(k(x —s)+m/2)=2iV* sin[k(s — x)]
v* (19)
I{x)= ZE—cos(k(x -5))

(]

which represent a standing wave with a phase shift between V and / of /2 in space and time.
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(b) Open-circuit line: Z; = oo, Ip|=1,$=0

V(x)=2V"cos(k(x-s))

V* o v (20)
1(x)=2Z—e"‘ cos(k(x—s)+n:/2)=217—sm[k(s—x)].

o 0
(¢) Matched line: Z; = Z,,p=0,0=0

V(x) - V+e—ik(1-s)

. 21)

V —ik(x-s) (
I{(x)=—2¢e .
() VA

o

n-1
(d) Behaviour of mismatched lines. Consider Z; = nZ,, P=,+1 @20).

For n >1 the reflection coefficient will be p > 0 and ¢ = 0, and as n increases p—o 1l
For n < 1 the reflection coefficient will be p <0, ¢ =m, and as n decreases p — -1.

1.4 Input impedance
The input impedance, Z;, is given by:

7 _Vi(x=0)

i (x=0) which after some manipulation yields Z, =Z Z, +iZ tan(ks)
(X =

°Z,+iz, tan(ks) (%2

Thus the complex impedance, seen at the input depends on the load Z; and the line length s.
Again it is useful to note some particular cases.

(a) Half-wavelength line

Consider a line of one half wavelength, then s = A/2 and from (22) Z; = Z;. In this special

case, the input impedance equals the load, independent of the line impedance Z, (remembering
k = 2m/A).

(b) Quarter-wavelength line

Consider a line of one quarter wavelength, then s = A/4 and from (22),
ZZ

Z = Z—° (Quarter — wave transformer) (23)

L

Equation (23) provides a useful way of matching two impedances by adapting the line between
them. This is best illustrated by an example. Consider the problem of matching a 60 Q source
to 100 Q load using a 'quarter wave transformer' as shown in Fig. 4.. To ensure a match the
required inter-line impedance is given by (23) and is Z, = (60 x 100)}/2 = 77.5 Q. Note that
the sum of all reflections is equal to zero, but this is only correct for one frequency. In the case
of pulses, a match is not possible, since a pulse contains a very wide spread in frequencies.
This can be seen from the Fourier expansion for a pulse. But since the reflection coefficient p
is valid for all frequencies, it is valid also for a pulse. Therefore reflection and transmission of
pulses can easily be calculated. As an example, the behaviour of a pulse fed into the matching
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transformer (Fig. 4) is considered (Fig. 5). As pulse —) arrives at the discontinuity (Z; = 60
— Zp =77 Q), it is split into a reflected pulse <— and a transmitted pulse —> and so on;
since —-> is matched, there will be no reflection; —-> and (——@ — with a phase jump of © —

belong to the reflected pulse (—-, and an infinite series of reflections occurs with decreasing
pulse amplitudes.

(:::): 6092 Zg 1009[] zy

Fig. 4 Impedance matching transformer

Z,=100Q
Z,= 779
12609

p =012

p=013

Fig. 5 Reflection of pulses in the impedance matching transformer

The application of (18) to the different boundaries in Fig. 5 gives numerically,

—

=1, p, =0.127, p, =0.127
=p,V. =0.127

<
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where the 'vector arrow' denotes the direction of the pulse propagation. The energy in a pulse

is proportional to V2:
¥y =V -V =0.992

Vz = pz‘-;z =0.126

V3 =0.984
Vy =0.125
V4 =0.016

1.5 Measuring mismatches

In section 1.3, the effect of terminating a line with a load impedance was discussed with
the help of a complex reflection coefficient defined in (18). The reflected wave and the forward
wave interfere and the standing wave pattern thus created can be detected and used to measure
the mismatch. The ratio of the maximum voltage to the minimum voltage in the standing wave
is known as the Voltage Standing Wave Ratio (VSWR) and is denoted Sw. Note the inclusion
of modulus signs in the definition of the VSWR. These are needed because the measurement
techniques will average over time and the amplitudes of the voltages will be detected. The
maximum voltage will occur at a point where the forward and backward waves have the same
phase so that their amplitudes add directly. Similarly, the minimum voltage will occur at a
phase where they are opposed.

_Vew _ M+

S. = =
V. V-

(= VSWR) (24)

Some methods for measuring Sw, p and Z; are presented in this section. For these

measurements the use of waveguides rather than transmission lines does not affect the results or
procedures.

1.5.1 Slotted line with movable probe
Figure 6 shows an rf generator feeding a cavity with a slotted line in the input. A

movable probe measures the voltage at different positions along the standing wave and thus
measures the VSWR due to any mismatch.

Zr
(e.g.resonator)

movable |- [
probe

] Slotted line

_]__;liding contact

= F
X

1

!

Fig. 6 Voltage Standing Wave Ratio (VSWR) measurements with a slotted line

;
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The combination of (18) and (24) gives

Sy -1 |Z,-2,
||=SW+1==ZL+Z ' 23)
1.4 L ]
The inversion of (25) gives
z,=z,%P 26)
L o 1__p '

Thus the reflection factor Ipl and the terminal load impedance |Z;/| is obtained from (25) and

(26). The position of the probe then gives the phase Z; = 1Z;le. The measurement of A is
simple since the distance between two minima = A/2.

1.5.2 Four Fixed Probes with display of p

F 3 x =
U U v
®_i : : L 4 F-@

A | oas | s | s |

Fig. 7 Four-Fixed-Probe technique (less used nowadays)

In this case, the movable probe is replaced by four fixed probes and the outputs are
conveniently displayed as the complex reflection coefficient in polar form (see Fig. 7).
Although this technique has been largely superseded by more sophisticated electronic equipment
such as scalar and vectorial network analyzers, it is a clear illustration of the underlying theory.

Consider a transmission line of length s, terminated with a load of reflection coefficient p
as shown in Fig. 3. The expression for the voltage on this line, without the time variation, is
obtained from (13)

Vix)=Ve ™ +V,e* . (14a)
Let the load have a complex reflection coefficient at the load of p =|ple” , then by (18)

p=|ple® = ﬁe""“ ) (27)
|4

Consider now the instrument in Fig. 7. Let the distance from the load to the first probe be s
and place the origin x=0 at this point. The voltage at probe 1 would then simply be

Vpxobel =V +V,=V1+V,/V)
and with (27) would become
Vo1 = Vi(1+[ple %) . (28)

The probe, however, only detects the amplitude, so the square of the modulus of (28) is taken
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Vo = Vil (1+]pf +2lp|cos(2ks — ) . (29)

Exactly the same analysis can be applied to all the probes. Although V; will have different
phases for each probe |V, | will be the same. For each probe the distance s is increased by
M8, that is the argument of the cosine is increased by /2. Thus,

Ve o =il (1+Iof + 2plsin(2kd )
Wwes| = Wil (1+pf — 2plcos(2kd —6)) G30)

WVoseo| = Vi (1+]pf = 2lplsin(2ks - 0)) .

2 2 2 2
For |mebe1| _‘Vprobe 3[ and |mebe 2| —|mebc 4| it follows that

Vo ~[Fowaesf = Vi 4plcos(2is-0) Gy

2

WViez| =[Visea| = Vi 4lplsin(2ks—0) . (32)

Equations (31) and (32) represent p in polar coordinates. A simple arrangement using
diodes with a square-law response (small amplitudes) makes it possible to display the reflection
coefficient on an X-Y oscilloscope.

1.5.3 Directional coupler method

Direct measurement of p and ¢ can be made by two directional couplers (see Fig. 8)

/ / / p s //, / /,, /
. // S P
/ Rfor\r{d// / Bbg/ckwqrd

BOM@
ETSYas viis
( _ — (g
\ )

—> —

Fig. 8 Double directional-coupler reflectometer

The dimensions of the loop and the resistor have to be chosen such that the currents induced by
the magnetic and the electric field respectively have the same value. Due to the orientation of the
loop, the currents either add up or cancel each other corresponding to the forward or backward
travelling wave. So the reflection coefficient can be measured singly by two directional
couplers forming a directional bridge.
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Since the coaxial line (see Fig. 9) is one of the most important transmission lines, some
characteristic parameters are given.

Fig. 9 Geometry of a
coaxial transmission line

The inductance per length is given by L'=®', which can be evaluated from the magnetic
field between the two conductors.

$H-di=1, sothat p=¥
21r

The total flux linking the inner conductor per unit length is then

, b ' b uo b
qn:{B dA=;[B dr=1-"In—

where A' is the area in the radial-longitudinal plane between the inner and outer conductors.
Thus the inductance per length is,

L=t (33)
2T a

Similarly the capacitance per length can be found from

, ! ! 2me
=21 __ = ‘11 == (34)

b = b 1 ) 1_
!E, dr l%q ~ar Ing

The substitution of (33) and (34) into (10a) leads to,

L'C': pg =

o=

' (35)

Voh

]

For a vacuum-filled line, p =1, and e=¢, , thenby (35) v,z =c where ¢ is the speed of

light. For dielectric-filled lines the phase velocity is slowed down. For example, with poly-

ethylenc 1, =1, €, =2.26 , thenby (35) v,, =~ .

L5

Substitution into (12a) gives the characteristic impedance Z of the line,
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T |H| o 21t

Equation (36) can be rewritten using the impedance of free space w/(uo /€g) =120m [ohm]

b
In— m
Z, =—& 2 120% [ohm] .
2 \/ (S

The power flow density [watt/m?] in the line is given by Poynting's vector:

After integration over the cross-sectional area of the line the total power flow is,

S,=[3-dA = j —2nr dr=VI or §,=V, I, 37)

27131)1— a
a

2. THE QUALITY FACTOR Q OF A RESONATOR (FIGURE OF MERIT)

The design of cavity resonators, as they are commonly used for particle accelerators,
determines their efficiency at concentrating the field in the region of the beam, storing energy,
having the correct resonant frequency and so on. The most important characteristic number for
a cavity is its 'quality factor', Q, which is defined as,

27 stored energy 21tU o,U
energy consumed per penod W W

(38)

where U is the stored energy, W is the average rate of energy loss, T is the period of oscillation
and g is the natural resonant frequency If the resonator is unloaded Q=0 and W is the
power lost in cavity, but if the resonator is open and loaded Q = Oy and W is the power lost in
cavity and the external system (feeding line, transmitter etc.).

2.1 Closed, free-running cavity

In a closed cavity, the power loss will be equal to the rate of change of the stored energy,
W=-2 andfrom 38) w=22u
dt Q

so that the decay of the stored energy will be
W=W,e W (39)
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where

Ty = -f— = decay time of stored energy . (40)
Since W o« E?, the field will decay as
t
E(1)=E, € 2ty ¥ 41)
where
20 .
= PO 215 decay time of field . (42)

4

The homogeneous differential equation for an oscillator with damping factor p is

2
e+ ralE=0. “3)

where wgo is the resonant frequency when p = 0. Substitution of the trial solution
E=E,e" leadsto A +ph+a, =0

yields

l=—§ii1/0)002—(p/2)2 =—§iiwo .

2
For 0)30 > (E—} , the solution will be harmonic with an exponential envelope. Thus the decay
of the field will be given by

E=Ea e-(plz)l ei(o,r=Ea e-l/'rz eim,t

44)
and by comparison with (41) and (42), it can be seen that,
,=2=22 sndthat p=22 45)
P o, 0
2.2 Cavity with external excitation
With an external excitation force C ¢/“X (43) becomes
dz—f + pé£+ w2 E=Ce™ . (46)
dt dt
Substitution of the trial solution E=A ei®* gives
A= C C 47)

(0, — ) +iop ) (2, - 0?) +i e '
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From (47) it can be seen that, as w — 0 then A—-)—(’;— andas W —e then A—>0 .

When the external frequency is close to the natural frequency then,

0! -0’ =(0, - )0, +0) = 20,A®
C
A=——mT : (48)
20,00 +i 28
Q

Thus |A| is maximum when Aw is zero, that is the cavity is tuned to the resonant frequency.
In this case
4L iy =2
i

o 0

The phase difference between A and C is described by -i ,which is -/2. The stored energy is
proportional to the square of the amplitude of the field so that,

C? 1 4? 1
3 oC
AO)Z + 0.)02 Amz + E).i
40 20
The quality of the resonator may be characterised by the 'narrowness' of its resonance. Let

Awy be the full width at half height of the | A2 versus w—curve (i.e. stored energy versus
excitation frequency, see Fig. 10), so that

U e |A%|=

T (49)

2
’A2|=|A—’"2"—I: when Aw= :t%AmH

then by (49) (50)

¢ = phase angle between C and A:

Fig. 10 Stored energy and phase shift with respect to the excitation of a resonator
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Thus for w=wy TAwy/2 the amplitude A has decreased to A/ V2 and the stored energy is
reduced by 1/2. From (50) it is clear that Q is a measure of the 'narrowness' of the resonance

(that is of the curve of stored energy against excitation frequency) and is therefore a measure of
the quality of the cavity.

Equation (47) relates the two amplitudes A and C. The phase shift between these
amplitudes can be found from the denominator of (47) and is given by

oo, /Q

tang == 75 (51)
Thus (51) shows that when
w=0 tanp=0 ¢=0
Ww=oc tane=0 =-7
W=, an@=oc ¢=-7/2
For a given phase shift (51) can be solved to give,
® 1 1Y
~(0)=— +,1+ 52
®, (9) 20tan \/ [ZQ tan(p} 2

If (51) is evaluated for the phase shifts ¢ =*n/4, then

W, ~ 0
Qo) -®®) 2040

+]= which gives A =+—2 .

20

By comparison with (50), it can be seen that Aw is just half Awy and that the phase shifts
¢ = *m/4 correspond to the half height of the curve.

For small angles

ande =022 othar 22-22 (53)
0] A

2.3 Measurement of Q

There are several methods which can be used to measure Q based on the information
given in the two previous sections.

(i) In a closed resonator the decay time of the stored energy from (40) gives Q = @ Tw =
Q, or the decay of the amplitude of E or H: from (45) gives Q = wo Tg/2 = Q. For example,
for a conventional cavity w, = 21t 500 106 Hz, Q = 10000 gives a decay time of T ~ 3ps! For

a superconducting cavity:Q = 108 and gives a decay time of Ty = 30ms

(i) Measurement of Aw when the stored energy is halved, which corresponds to a signal
drop of -3.01 dB, can be used with (50) to give,

(Do
Awy

0=
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or alternatively Awy can be found by detecting the phase shifts of A¢p =+ 45°.

3.  Measurement of AQ/Aw in the neighbourhood of the resonance [see (53)], so

® tanAQ = o, 49

0= 2 Aw

In the last two cases, the losses should not be too high, Q not too small and the distance to
neighbouring modes much greater than Awy.

2.4 Calculation of Q

From the definition of Q given in (38)

0= mv,;,U , where the stored energy can be caculated from
et 2 1 o ) ¢l 52
U= [(3eE2 - qutr? ) v = [3eE2xne) @V = [u(eya) 4V 9

The losses W can be calculated by Poynting's vector perpendicular to the surfaces via the
surface currents, which are given directly by the magnetic field at the surface, that is

H: —l-dA (55)

1, 1 1
W_IEI o5 2% 68

“”oﬁdA:J

where A = surface area, G = conductivity and & = skin depth. A conventional cavity uses

copper, so that
d= 2 , for copper: ¢ =6.26x 10’7 'm™! |, §[m]= 0.063
V HOW

VFHz]

For a rectangular resonator with the dimensions a = 0.5 m, b=0.2 m, £ = 0.45 m, see Fig. 11,
the field distribution of the TEj0; mode is given by:

y

E, = E, sin(=)sin( 2= )e™
a £

E A X nz.
l H =—iBe o g ™) cos(T2 e
. lzo 2zsm( 2 )cos( Z)
. (56)
b H = iﬂ?i’—cos(ﬂ)sin(ﬁz-)e““‘
X z,2a & L
a

Z ===
Fig. 11 Rectangular cavity &

and the resonant frequency is given by
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2 2
o, =c (-’E) +(£) | 57)
a £

It follows that wg = 2xf = 21 448 MHz and Q = 33 000.

So far no external losses have been considered. The Q-value was given by Qo = WoU/W,
where W represents the losses in the cavity. Therefore the cavity has to be loosely coupled to
the transmitter, otherwise the losses Wey; in the transmission line and transmitter will change
the result. The Q of the external system is called

o U
=—c (58A)
O.. W
The loaded Q of the cavity is then:
- Ol (53B)
4] WAW.
which leads to
1 1 1
LIV S (59)
QL QO Qexl
The so-called coupling factor B is given by
p=Le - Wu (60)
0. W
and is related to the reflection coefficient at resonance by
o= L=/ 61)

1+1/p

For B=1 (so-called critical coupling) all power from the transmission line goes to the resonator
and no reflection occurs. In this case

W,=W, p=0 and QL-—-%.

In the case of B << 1 (weak coupling) and B >> 1 (strong coupling) all the power will be
reflected.

3. RESONANT PERTURBATION MEASUREMENTS OF H AND E FIELDS
This section is based on the general theorem of Boltzmann/Ehrenfest [1-3], which states
that, 'for a periodical and linear working, lossless engine the product of energy (kinetic and

potential) and period time is invariant for adiabatic deformations'. This was adapted to rf
cavities by Maclean [4] as

UT = const.
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a4 s (62)

where ® =2n /T . For example, in an 'LC ' oscillating circuit

1
0 = ——=—

VLC

so that for slow variation of C in time, i.e. AC/C very small, within one oscillating period
(adiabatic change of C):
do__1dC (L =const.) . (63)
0] 2C

The stored energy is given by

2
U=—1-CVf=qu
2 2C

where ¢, is the maximum charge on the capacitor andV, = maximum voltage on the capacitor.
For an adiabatic change of C:

U __1dC “
U 2 C

which when compared to (63) gives the original hypothesis (62)

do _dU
o U’
Increasing the separation of the plates of the capacitor requires an external force, which
increases the energy of the system. Similar considerations can be made for moving a part of the
surface of a resonator or for pushing a perturbating object into a cavity [5-7]. If a perturbating

dielectric sphere (for the sake of simplicity) of volume v is brought into the electrical field of a
resonator of volume v, the stored energy and the resonance frequency will change. From (62)

do _ AU
w U

o [

where Upis the stored energy without the object and AU=Uj-U.
V2 1 V2 2 Vl 1
AU= -z—eoEEdv = [eo(Eu+Egpp) av- | —2-€oe,E,-2dv (65)
0 v 0

where
E, = electrical field without the bead(E undisturbed)

Egip = dipole field outside of the homogeneously polarised bead
E; = homogeneous field inside the bead

gr = relative dielectric constant of the bead material.

In the quasi-static case, which is assumed here, the following relations are valid
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3 E (The factor 3 stems from the depolarization factor N
"“e,+2° %  ofasphere,N = 1/3)

E , =pcosd _ psind

",

o= , Eq 3o =2
dip 27r£0r3 B.dip 41t£0r3
} £—
= dipole moment = 3v e FE
p D 1£r+2 oLy
3(e, -1
P =polarization ~=¢, (&, )Eu :
€, +2

The use of these relations with the restriction of very small perturbations, that is small beads
whose diameter << wavelength, it can be shown that

AU = —%VIPEu - -% PE, (66)

which is the energy of a dipole with a dipole momentum p in a homogeneous field E,. Thus

3e, -1
AU:-lvleo(;)EE
2 € +2

and by introducing the volume of the bead

Vi =—TH
AU = -2mre, (:r’ ;;) E2 . (67)
On average:
AU =1 &, S E2 . (68)
€, +2
The corresponding result in the magnetic case is
AU, =-Tr" |, “—;12- H,, . (69)
The overall change in stored energy is
AU=AU,,,+AU,, (70)

from (62), (68), (69) and (70)

3 — —
Ao _AU _ [80 g, IE,,Z.‘+H,,H'—1H3;. . (1)
o U Ul “’e+2 W, +2

r
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U can be substituted by WQ/o from (38). Q and the input power W (input = losses at
equilibrium), have to be measured to get the absolute field strength, so that

A‘;’-=—-1—1cr3 eo——-—e’—lEfu+uo———u’_1Hfu . (72)
(] ow €, +2 H,+2

r

Two cases are of interest:

(i) Dielectric perturbing bead

3
A® b 195 e, -1 1

=1,sothat —=-—Lg¢g L __E- |
Hr o) U ¢ +2 "

In this case, the electrical field will be measured. AU will be negative, since energy will be
gained by introducing the ball into the field region.

2) Metallic bead

€ — oo: U — 0 (diamagnetic due to the induced currents)

_42)___7!7‘13[
0] U

2 2
eoEou _%Q‘Hou] :

The magnetic field term increases the stored energy! The metallic bead measures Eou and Hoy.

In order to separate these contributions, two measurements are needed (metallic + dielectric
bead).

Instead of perturbing spheres, ellipsoids of revolution can be used, the depolarization
factor N will then change:

1
sphere: N=-
P 3
oblate ellipsoid: % <N<l1
prolate ellipsoid: 0< N < -;— .

With ellipsoids the field direction can be determined. Furthermore, for a metallic needle the
effect of the parallel electric field is much larger than that of the magnetic field or of a
perpendicular electrical field which can be advantageous in many practical cases.

Other geometries are to be considered with caution (e.g. a metallic cylinder), since the
fields are rather complicated and may no longer be homogeneous inside. To get precise results,
the perturbating ball should be calibrated in a resonator with a known field distribution (8]. Ina
normal setup for perturbation measurements the bead is moved through the cavity. But the
mechanical oscillations of the bead make it difficult to define its position exactly, especially in
small resonators used at high frequencies. In that case, the bead is kept stationary and the
cavity is moved. A can be measured directly, or by the change in phase corresponding to the
measurement of Q.

Consider as an easy example a rectangular cavity (see Fig. 13). This is effectively a

section of a rectangular waveguide, short circuited at both ends with flat parallel plates. The
fields are described and shown below in the equations and figures 13 and 14.
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Fig. 12 Test bench for perturbation measurements at high frequencies

Fig. 13 Diagrammatic view of fields in a rectangular cavity

TE-modes in rectangular cavity

E =-i O, H, %’Ecos(—mm )sin(?) sin(ﬁti)

k? a 1
E =i m—L:”Ho msin(m)cos(ﬂ)sin(-{n—zj
Yk a a b 1
E,=0
H = - ﬂ-lz-H, sin(-—mnx )cos(m)cos(ﬂg)
a 1k a b 1

Hy = —EE%HO cos(——mm )sin(f—)cos(s—n—z—)
alk a b 1

H,=H, cos(ﬂx—)cos(n—nz) sin(ﬂ)
a b 1

s#0 mornmay be zero
A (5

re=——all— | +|— 1| +| —]| .
2e\\ a b 1
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TE101-mode in rectangular cavity
m=1, n=0, s=1, y=b/2, z=1/2
E.=E,=H,=H =0

, [ T™X
E =iE_ sin| —
y oy

a
™

H,=H, cos(— .

a
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Fig. 14 Field distributions for TE101 and TE20; modes

The results of a typical measurements using the equipment in Fig. 12 is shown in Fig. 15.

i

Hp o UTTTTIID T U Hg T

i“ﬁ:

; L ‘ S ; T [RRPR P N—— - - '

Fig. 15 Frequency perturbation measurements with dielectric and metallic beads
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Placing the bead near the cavity walls should be avoided since the mirror fields influence
the results. For example, in the case of a dielectric bead Aw will be increased. The field in the
perturbating dielectric sphere will change from

ElzizEu to E = 13
(e +2)-4 (e, -1 3

d

sE

u©

where r; is the radius of the sphere and d is the distance of the centre of the bead to the wall.
This results in [9]:

Aw T g -1 2
——=——0¢t 3Eou N

N o &)

Theory and measurement show that for distances d > 2r; the mirror dipole effects are
negligible.

4. NONRESONANT PERTURBATION THEORY

Measurement of both the electric and magnetic fields in an arbitrary cavity can be

performed by measuring the change in the reflection coefficient p = Ipli¢ at a test port while a
bead is pulled through the cavity [10-11]. The requirements for this type of measurement are:

(1)  No energy can leave or enter the cavity apart via the test port.

(i) Only one mode is present at the test port.

(ili) Operating frequency is left constant during measurements.

(iv) Losses occur inside the cavity and materials used are linear and isotropic.

(v). The surface S lies inside the cavity walls, except for the test port (see Fig. 16).

—— Surface S

\ S = —

Input port Perturbing object

Fig. 16 Schematic picture for nonresonant perturbation theory

Similarly to the Lorentz Reciprocity Theorem, a vector p can be introduced with the
definition of

b —_

p=E, xd,-E, xi, (73)
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where subscript # denotes the unperturbed fields and p the perturbed fields. Choose the
enclosing surface S such that there is a surface S2 for which

s

E“:H =EP=HP=I-5=O

u (74)
and a surface S; (at the test port), where the fields are not zero, so that
[(B7) as = [(p#) ds . {75)
S 5
Over surface Sj:
pi=n(E,xH,)-A(E,xH,)= pi=E,H,~EH, (76)
where the subscript s denotes a direction parallel to S;. Expressing the fields as
E_=(1+p,)E,, H,=(1-p,)H,
us ( p“) sy’ us ( pu) usi (77)
E,=(14p,)Ep H, =(1-p,)H,
where the subscript i denotes incident waves and py, pp are reflection coefficients, then
j(ﬁﬁ) ds =(pp_pu)J.(Elm'Hpsi +Epn'Hu.u') ds y (78)

5, 5,

As the power flow into the cavity is kept constant, the incident fields are of the same value in
either case, so that

[(77) ds =2R(p,-p.) a9)
5

On the other hand
[(p7) ds =[(E,H,—E.H,) ds . (30)
S,

5

If the perturbing object is assumed to be small compared to the wavelength, its scattered fields
will be of almost a pure dipole-type and Epg and Hpg can be expressed as

E,=E,+E, H,=H,+H,
where the subscript d denotes the dipole part of the fields. Thus

2P(p, —p.)= [ (EHy - ELH,) ds (81)

)

Writing E s, Hys in terms of the dipole moments set up by the object gives

—-

O

E, =CP+Coil H, =G,p+C,il
- - (82)
28(p, ~p,) = K+ KoM

119



where

K, =[(A,C-E/C,) ds
S

K,=[(A.C,-EC,) as . (83)
S

The assumption of ideal electrical and magnetic dipoles (by using the Reciprocity Theorem and
comparing coefficients) leads to

Kl = —iO)Eu Ky = i(DuoHu

and hence 2F(p, —py ) = —ie E,P — p,H,M) (84)
with
P= eoaei‘u (isotropic materials)
M=o, ®>
the final result is
2P(p, -p.)=—io(e,0. E2 - p, a0, A2) . (86)
For a dielectric and magnetic beads of radius r;
o, =4m; : - ; , o, =4 ﬁ——;—; : 87)

In order to determine both the electric and magnetic fields, two successive measurements are
required with dielectric and magnetic (e.g. metal) beads as perturbing objects (as in the resonant
case). For this more general "nonresonant” method it is unimportant whether the cavity is in
resonance or not!

S. SHUNT IMPEDANCE Ry, Rs/Q

An important quantity to characterize the effectiveness of an 1f driven accelerating gap is
its "shunt impedance", as defined by

=0 (88)

where gV, is the energy gain of a particle with charge ¢ traversing the gap at optimum phase,
and W is the power dissipated in the associated metal surfaces. The factor 2 in the denominator

is applied to keep the analogy to Ohm's law V2t = R-W, with Vegr = Vo/N2.

Consider now a row of length L of n equal gaps. Its energy gain is

AT, =q-\2RW n (89)

By introducing a "mean accelerating field" E, defined by E, = AT/qL we have
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E, =2RW ._Z.= ‘,2%2.% = V2RW 90)

where W is the power dissipated per unit length and R’y the shunt impedance per unit length,
which is commonly used to quantify the effectiveness of an accelerating structure

2
)
R=__9__ (91
Toowr )

Actually, the V and E, used in Egs. (88) and (90) have to be evaluated using the axial field
"seen" by the particle, i.e.

Vo= E@i)z or 92)

1 eL
E,= Z-[O E(z,f(z)dz  resp. 93)

where E(z,z) is the axial electric field as a function of space and time and #(z) is the time, at
which a particle is at location z, i.e. 1(z) = [ dztv + 15, where 1, has to be chosen such that the
integral (which is quite generally proportional to cos ®?) becomes maximum.

Obviously, if the particles have to be accelerated off this optimum phase (which is usually
the case for reasons of beam dynamics) the actual accelerating field is

E=E, cosdy 2R W’ 94)

where ¢g = (7 - 1) is the phase angle by which the particle differs from .
Equations (92) and (93) may be illustrated by simple special cases:

In Eq. (92), if the traversing time is very short compared to the rf period, V, becomes
simply the voltage along the gap.

In Eq. (93), E(z,t) = A cos(wr-kz), i.e. E(z,1) is a travelling wave with phase velocity v =
w/k Eq is equal to the amplitude A of the travelling wave.

The value of the electric field strength depending on z can be measured by using the

perturbation method with an electric sphere (Eq. (72)), and the mean value of the electric field is
then given by:

1L 1 2
E, = [ Bz = of &+ Iw/—dz 95)

, 1 (e, —leo

The time dependence of E has to be considered by a so-called transit time factor separately, this
factor is implicitly contained in Eq. (92).

Also often used is the ratio of shunt impedance (88) and the quality factor (38):
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2
Boto (96)
0 20U

Since U ~ V2, this expression only depends on the cavity geometry; it allows, for example,
the comparison of the effectiveness of different structures.

6. MEASUREMENT OF THE POTENTIAL DIFFERENCE V IN RF GAPS

Having measured the electrical field as a function of location, V is then given by V =
|[E-d¢ . Butin cases of complicated structures like RFQ, where the precise measurement of E
is difficult, it is convenient to measure the field between two tubes, which are connected to the
electrodes, between which V shall be determined. This can be done easily by bead
measurement through the gap (see Fig. 17) [12]. The drift tubes must not disturb the original

field distribution and the resonance frequency, their capacitance therefore has to be sufficiently
small.

L1 3 3 i 1T 1Ty T T T 1.l

4 ®

TR «f . > PEE— bead

1%

| S A SN R S GUAE W SENS G SRS GRS | h GRS S S )

Fig. 17 Measurement of potential difference V

If an accelerator cavity is operated at high power level, another method gives astonishingly
precise results (0.5-5% depending on experimental setup) by measuring the X-ray spectrum.
The spectrum originates from electrons (always present due to field emission and background
radiation) accelerated in the gaps. The highest energy which they can get is V-e, V being the
maximum voltage between the electrodes. This technique is applicable for voltages exceeding
about 40 kV for a standard n-type Ge detector. An example is given in Fig. 18. The X-ray
spectrum ends at 243 keV. Since the X-ray detector was shielded by lead, the spectrum also
shows the characteristic X-ray peaks for Pb. In all measurements, absorbers (useful are Al,
Cu, Sn, Pb depending on voltage) have to be used to cut the uninteresting low-energy part of
the bremsstrahlung spectrum and to reduce X-ray intensity on the detector [13]. By moving the
shielded detector the voltage distribution along the accelerator can be scanned.
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