
A very short description of the ROOT file of
Simulation Output

G. Battistoni & S.M. Valle

September 2019

The FOOT simulation setup
in newgeom branch

Start
counter

Beam Monitor
Target

Vertex

Magnet 1

Intermediate
tracker

Scintillator

Calorimeter

Magnet 2

MicroStrip
Detectors

The MC Output for FOOT
We have configured some user routines of FLUKA to produce an
“ad hoc” event-by-event output written as an ASCII file (*TXT.dat)

Those ASCII files contain information about all the particles and
interactions simulated. A simple and portable code reads these
txt’s and outputs ROOT files

Tree
Branches

Output from
MC: Txt file

ROOT file
with Tree structure

1st Step 2nd Step

Example of a root output file

For instance the Root file: 16O_C2H4_200_1.root
(also in /gpfs_data/local/foot/Simulation/V14.0.1 on Tier3)
2 107 events of 16O on a 2 mm C2H4 target
Usually only events with inelastic interaction in the
target were written on output, for compactness:
~1.1% of total no. of simulated events. However full
simulation can be produced.

The root data by FLUKA
The data are stored in a root file with several blocks in
the structure EVENT_STRUCT (defined in the file
EventStruct.h):
• The particle block: kinematics information of the

produced particles
• The detector block: information about the detector

outputs of the event and namely about energy
releases and hits + links to “MC truth”.

• The crossing block: information about the particle
that cross different regions of the setup (both
inactive and active)

The particle structure
Int_t EventNumber;
Int_t TRn;
Int_t TRpaid[MAXTR];
Int_t TRgen[MAXTR];
Int_t TRcha[MAXTR];
Int_t TRreg[MAXTR];
Int_t TRbar[MAXTR];
Int_t TRdead[MAXTR];
Int_t TRfid[MAXTR];
Double_t TRix[MAXTR];
Double_t TRiy[MAXTR];
Double_t TRiz[MAXTR];
Double_t TRfx[MAXTR];
Double_t TRfy[MAXTR];
Double_t TRfz[MAXTR];
Double_t TRipx[MAXTR];
Double_t TRipy[MAXTR];
Double_t TRipz[MAXTR];
Double_t TRfpx[MAXTR];
Double_t TRfpy[MAXTR];
Double_t TRfpz[MAXTR];
Double_t TRmass[MAXTR];
Double_t TRtime [MAXTR];
Double_t TRtof[MAXTR];
Double_t TRlen[MAXTR];

for each of the produced particles we register the info in
arrays: i.e. TRmass[2] is the mass of the 3rd produced particle

EventNumber = FLUKA event number:

TRn= number of particles produced: max equal to MAXTR
TRpaid = index in the part common of the particle parent
TRcha = charge
TRbar = barionic number
TRfid = FLUKA code for the particle (es: photon, jpa=7)
TRgen = generation number
TRdead = number of the region where the particle dies
TRix, TRiy, TRiz = production position of the particle
TRfx, TRfy, TRfz = final position of the particle
TRipx,TRipy,TRipz = production momentum of the particle
TRifx,TRfpy,TRfpz = final momentum of the particle
TRmass = particle mass
TRtime = production time of the particle
TRtrlen = Track lenght of the particle

The individual detectors structures

DETn = number of energy release in the detector DET
DETid = position of the particle responsible of the release

in the particle block
DETixin, DETyin, DETzin = inizial position of energy
release

For each detector with n energy releases the info are
stored in arrays (x, p, De, time, etc...) with the i-th
component related to the i-th release . Same syntax for all
scint detector: "info""NAMEDETECTOR”[index of the
release]

DETxout, DETyout, DETzout = final position ” “
DETpxin, DETpyin, DETpzin = inizial momentum “ ”
DETpxout, DETpyout, DETpzout = final momentum “ “
DETde = energy release

DETtim = initial time of the energy release

Start Counter: STC

Int_t STCn;
Int_t STCid[MAXSTC];
Double_t STCxin[MAXSTC];
Double_t STCyin[MAXSTC];
Double_t STCzin[MAXSTC];
Double_t STCxout[MAXSTC];
Double_t STCyout[MAXSTC];
Double_t STCzout[MAXSTC];
Double_t STCpxin[MAXSTC];
Double_t STCpyin[MAXSTC];
Double_t STCpzin[MAXSTC];
Double_t STCpxout[MAXSTC];
Double_t STCpyout[MAXSTC];
Double_t STCpzout[MAXSTC];
Double_t STCde[MAXSTC];
Double_t STCal[MAXSTC];
Double_t STCtim[MAXSTC];

MAXSTC = 200

Simple case of
non-segmented
detector

Intermediate Tracker:
ITR

beam monitor
BMN

Int_t BMNn; ... MAXBMN = 1000
Int_t BMNilay[MAXBMN]; ➞ layer #
Int_t BMNicell[MAXBMN]; ➞ cell #
Int_t BMNiview[MAXBMN]; ➞ view (-1:x 1:y)

Microstrips: MSD Int_t MSDn; ... MAXMSD = 1000
Int_t MSDilay[MAXDCH]; ➞ layer #

scintillator: SCN
Int_t SCNn; ... MAXSCN = 5000
Int_t SCNibar[MAXSCN];
Int_t SCNiview[MAXSCN];

crystal calorimeter: CAL Int_t CALn; ... MAXCAL = 6000
Int_t CALicry[MAXCAL];

Int_t ITRn; ... MAXITR = 300
Int_t ITRisens[MAXITR]; ➞sensor number

Vertex: VTX Int_t ITRn; ... MAXVTX = 300
Int_t VTXilay[MAXITR]; ➞ plane number

The crossing data structure
Not yet inherited in SHOE

Int_t CROSSn;
Int_t CROSSid[MAXCROSS];
Int_t CROSSnreg[MAXCROSS];
Int_t CROSSnregold[MAXCROSS];
Double_t CROSSx[MAXCROSS];
Double_t CROSSy[MAXCROSS];
Double_t CROSSzMAXCROSS];
Double_t CROSSpx[MAXCROSS];
Double_t CROSSpy[MAXCROSS];
Double_t CROSSpz[MAXCROSS];
Double_t CROSSm[MAXCROSS];
Double_t CROSSch[MAXCROSS];
Double_t CROSSt[MAXCROSS];

MAXCROSS = 10000

CROSSn = number of boundary crossing
CROSSid = position of the crossing particle in the particle
block
CROSSnreg = no. of region in which the particle is entering
CROSSnregold = no. of region the particle is leaving
CROSSpx, CROSSpy, CROSSpz = momentum at the
boundary crossing
CROSSx, CROSSy, CROSSz = position of the boundary
crossing
CROSSt = time of the boundary crossi
CROSSch = charge of crossing particle
CROSSm = mass of the crossing particle

This structure registers the info on the particles that cross the boundaries between the
different regions of the setup (detector elements, air, target). At each crossing the info
are stored in arrays

Energy releases and hits connection to
particles

To find which particle released energy in a detector we need to
build a pointer to the particle block. Given the j--th energy release
in the detector DET, then we build:

pointer= pevstr->DETid[j]--1;

Then the features of the particles responsible of the release (for
example the mass and the x coord of production) can be retrieved
from the particle block as:

Massa = pevstr->TRmass[pointer];
Xprod = pevstr->TRix[pointer];

DET

DETn = 2

DETn = 1

DETxin(1), DETyin(1), DETzin(1)
DETxout(1), DETyout(1), DETzout(1)

DETde(1) = Sum of energy releases by that “particle”
in DET

DETid(1)-1 = pointer to the particle in Particle Structure that originated hit=1
to access all infos (id, quantum numbers + kinematics) about that particle

DETxin(2), DETyin(2), DETzin(2) DETxout(2), DETyout(2), DETzout(2)

DETde(2) = Sum of energy releases by that “particle”
in a given region of detector DET

DETid(2)-1 = pointer to the particle in Particle Structure that originated hit=2
to access all infos (id, quantum numbers + kinematics) about that particle

