
From the FLUKA Advanced 
Course

User Programming
in the FLUKA environment



2

Why user routines
l Fluka offers a rich choice of built-in options for scoring most

quantities and for applying variance reduction techniques,
without requiring the users to write a single line of code

l However there are special cases where “ad-hoc” routines are
unavoidable, because the needed information cannot be obtained
through standard options

l FOOT is one of these cases



3

What is available for the users

l A number of user routine templates are available in the

$FLUPRO/usermvax directory and can be modified/activated by the

user in order to fulfill non-standard tasks

l The INCLUDE files containing the COMMON blocks are in the 

$FLUPRO/flukapro directory

l An extended mathematical library can in principle be exploited 

by properly calling its members from inside an user routine

l The compiling and linking scripts are in the directory
$FLUPRO/flutil

l Most user routines need to be activated by input directives

Flair can be used to edit, compile and link user routines in order to

build a user-specific FLUKA executable



4

Flair interface (I)
Flair has a button in the Compile frame which scans the input file for 
possible cards that require an user routine
It allows to copy the template routine from $FLUPRO/usermvax to the 
project directory



Choosing the builder



Parsing content of $FLUPRO/usermvax



Adding routines from other directories



8

Card – user routine correspondence

USRICALL

USERDUMP

USROCALL

USERWEIG

SOURCE

usrini.f
usrein.f

usrout.f
usreou.f

source.f

mgdraw.f

comscw.f
fluscw.f
usrrnc.f

MAT-PROP usrmed.f

USRGCALL usrglo.f

H
is

to
ry

 lo
op



SOURCE card in the input



Automatic recognition by FLAIR



Manual insertion from a user directory



12

User routine scope (I)

• comscw.f
• fluscw.f
• endscp.f
• fldscp.f
• musrbr.f
• lusrbl.f
• fusrbv.f
• usrrnc.f

• usbset.f
• usimbs.f
• udcdrl.f

SCORING BIASING

• abscff.f
• dffcff.f
• frghns.f
• ophbdx.f
• queffc.f
• rflctv.f
• rfrndx.f

OPTICAL
PHOTONS

SOURCE
GENERATION
• source.f
• (soevsv.f)

MAGNETIC
FIELD

• magfld.f

LATTICE
GEOMETRY
• lattic.f

INITIALIZATION
• usrglo.f
• usrini.f
• usrein.f

OUTPUT

• usreou.f
• usrout.f



13

User routine scope (II)

• mgdraw.f

multipurpose

• usrmed.f

accessing
(almost) everythingaccessing

particle stack

• mdstck.f
• stupre.f
• stuprf.f



Editing routines



Compiling and linking
• A FLUKA executable with user routines is in general application specific. It 
must be named and kept separately from the standard FLUKA

• Everything is managed today by FLAIR, however it is important to know the 
following details (managed automatically inside FLAIR):

• $FLUPRO/flutil/fff is the compiling script with the proper path to the INCLUDE 
subdirectory and the required compiler (g77 or gfortran ) options

Example: $FLUPRO/flutil/fff usrini.f generates usrini.o

then $FLUPRO/flutil/ldpmqmd –m fluka –o flukamy usrini.o will perform the  

proper linking generating the executable here called flukamy

• Tip: $FLUPRO/flutil/ldpmqmd –m fluka –o flukamy usrini.f will automatically 
call $FLUPRO/flutil/fff

15



Compiling and linking (Build) by FLAIR

setting the name of new executable by the user
specific for the problem under consideration



Successful building



l Language is Fortran 77 (C routines can be linked)
l Double Precision everywhere, except for integer variables beginning

with a letter in the range [i-n]
l Common blocks are in $FLUPRO/flukapro files and are loaded by

the INCLUDE statement
l Each routine must start with the following includes/common blocks:

INCLUDE ’(DBLPRC)’
INCLUDE ’(DIMPAR)’
INCLUDE ’(IOUNIT)’

Note the parentheses which are an integral part of the Fluka INCLUDE file names

l Users may add other FLUKA commons as well as their own commons
which may reside in different places

FLUKA programming rules

18



Numerical precision
l Floating point representation

± d0d1d2 … dp-1 × be

where: b=base,  0.dddd=significant
l Represents the number

± (d0 + d1 b-1 + … + dp-1 b-(p-1)) be, (0≤di<b)
l Bits required: log2(emax-emin+1) + log2(bp) + 1
l Real numbers might not be exactly represented as a floating-

point number. Example:
with b=2 the number 0.1 has an infinite representation and with 
p=24 will be represented as: 0.100000001490116119384765625

l IEEE representation:
n Single precision (32bit):

n Double precision (64bit):

19



Floating point: Accuracy
l Cancellation: subtraction of nearly equal operands may cause 

extreme loss of accuracy.
l Conversions to integer are not intuitive:

converting (63.0/9.0) to integer yields 7,
but converting (0.63/0.09) may yield 6.
This is because conversions generally truncate rather than round. 

l Limited exponent range: results might overflow yielding infinity, 
or underflow yielding a denormal value or zero. If a denormal
number results, precision will be lost.

l Testing for safe division is problematic: Checking that the divisor 
is not zero does not guarantee that a division will not overflow 
and yield infinity.

l Equality test is problematic: Two computational sequences that 
are mathematically equal may well produce different floating-
point values. Programmers often perform comparisons within 
some tolerance

20



Minimizing Accuracy Problems
l Use double precision whenever possible.
l Small errors in floating-point arithmetic can grow when 

mathematical algorithms perform operations an enormous 
number of times. e.g. matrix inversion, eigenvalues…

l Expectations from mathematics may not be realized in the field of 
floating-point computation. e.g. sin2q+cos2q = 1.

l Always replace the x2-y2 = (x+y)(x-y)
l Equality test should be avoided: replace with "fuzzy" comparisons 

(if (abs(x-y) < epsilon) ...)
l Adding a large number of numbers can lead to loss of 

significance, use Kahan algorithm instead
l For the quadratic formula use either

or

when b2>>4ac, then √(b2-4ac)≈|b| therefore will introduce 
cancelation

21

a
acbb

2
42 -±-

acbb
c
4

2
2 -±-



Some COMMON blocks in short
BEAMCM: beam particle properties (from BEAM and BEAMPOS)
SOURCM: user variables and information for a user-written source
SOUEVT: recording of the source event 
CASLIM: number of primary particles followed 
FLKSTK: main particle stack of FLUKA
EMFSTK: particle stack for electrons and photons
GENSTK: properties of secondaries created in a hadronic event
FHEAVY: special stack for nuclear fragments
FLKMAT: material properties
LTCLCM: LaTtice CeLl CoMmon for lattice cell identification
TRACKR: properties of the particle currently transported
PAPROP: intrinsic particle properties (mass, charge, half live…)
SCOHLP: variables concerning the current estimator type

22



(DBLPRC) (I)

DouBLe PReCision common
Included in all routines of Fluka, contains the declaration

IMPLICIT DOUBLE PRECISION (A-H,O-Z)
and sets many mathematical and physical constants.
Users are strongly encouraged to adhere to “Fluka style" by
• using systematically double precision (except for very good 

reasons such as calling external single precision scoring 
packages)

• and to use constants defined in this file for maximum accuracy.

23



(DBLPRC) (II)
*========= M A T H E M A T I C A L C O N S T A N T S ==========*

* -------- Numerical constants (double precision): --------*
* Zerzer = 0 *
PARAMETER ( ZERZER = 0.D+00 )
* Oneone = 1 *
PARAMETER ( ONEONE = 1.D+00 )
* Twotwo = 2 *
PARAMETER ( TWOTWO = 2.D+00 )
* Pipipi = Circumference / diameter *
PARAMETER ( PIPIPI = 3.141592653589793238462643383279D+00 )
* Twopip = 2 x Pipipi *
PARAMETER ( TWOPIP = 6.283185307179586476925286766559D+00 )
* Eneper = "e", base of natural logarithm *
PARAMETER ( ENEPER = 2.718281828459045235360287471353D+00 )
* Sqrtwo = square root of 2 *
PARAMETER ( SQRTWO = 1.414213562373095048801688724210D+00 )

24



(DBLPRC) (III)
*========= P H Y S I C A L C O N S T A N T S ==========*
* -------- Primary constants: -------- *
* Clight = speed of light in cm s-1 *
PARAMETER ( CLIGHT = 2.99792458 D+10 )
* Boltzm = k Boltzmann constant (J K-1) *
PARAMETER ( BOLTZM = 1.380658 D-23 )
* Amelgr = electron mass (g) *
PARAMETER ( AMELGR = 9.1093897 D-28 )
* Plckbr = reduced Planck constant (erg s) *
PARAMETER ( PLCKBR = 1.05457266 D-27 )

* -------- Derived constants: -------- *
*Alamb0 = Compton wavelength = 2 pi r0 / fsc , being r0 the classical electron radius *
* and fsc the fine structure constant *
PARAMETER ( ALAMB0 = TWOTWO * PIPIPI * RCLSEL / ALPFSC )

* -------- Astronomical constants: -------- *
* Rearth = Earth equatorial radius (cm) *
PARAMETER ( REARTH = 6.378140 D+08 )

* -------- Conversion constants: -------- *
* GeVMeV = from GeV to MeV *
PARAMETER ( GEVMEV = 1.0 D+03 )

25



(IOUNIT)
Logical input and output unit numbers

The logical units up to 19 (included) are reserved for FLUKA

* lunin = standard input unit *
PARAMETER ( LUNIN = 5 )
* lunout = standard output unit *
PARAMETER ( LUNOUT = 11 )
* lunerr = standard error unit *
PARAMETER ( LUNERR = 15 )
…

Use the pre-defined output units when you need messages from your user 
routines: 
WRITE ( LUNOUT, *)    ‘  My initialization is active’
WRITE (LUNERR, *)    ’    MySource : warning, energy is 0’

26



(CASLIM)
Keeps  preset number of histories and current number of histories 

*   /caslim/ is needed to decide when to stop the run                
*  Trnlim = if cpu-time-left<tlim the run will be ended                          
*  Tpmean =  average time needed to follow one beam particle 
*  Tprmax = i maximum time needed to follow  one beam particle 
*  Trntot = the cumulative time needed to follow the beam particles 
*  Ncases = maximum number of beam particles to be followed      
*                 modulo 1,000,000,000)                                
*   Mcases = maximum number of beam particles to be followed      
*                 in excess of 1,000,000,000, divided by 1,000,000,000 
• Ncase = current number of beam particles followed (modulo    
• 1,000,000,000)                                       
*   Mcase = current number of beam particles followed in excess  
*                 of 1,000,000,000, divided by 1,000,000,000           

Useful to be included whenever the current event number is needed 

27



(FLKSTK)
*     /Flkstk/ stack for the primaries                                 *
*        Wtflk = particle statistical weight *
*        Pmoflk = particle (laboratory) momentum (GeV/c)               *
*        Tkeflk = particle (laboratory) kinetic energy (GeV)           *
*        Xflk = particle position x-coordinate                      *
*        Yflk = particle position  y-coordinate                      *
*        Zflk = particle position  z-coordinate                      *
*        Txflk = particle direction x-coordinate                      *
*        Tyflk = particle direction y-coordinate                      *
*        Tzflk = particle direction z-coordinate                      *
*        Txpol = x direction cosine of the particle polarization *
*        Typol = y direction cosine of the particle polarization      *
*        Tzpol = z direction cosine of the particle polarization      *
*        Dfnear = distance to the nearest boundary                     *
*        Agestk = age of the particle (seconds)                        *
*        Cmpath = cumulative path travelled by the particle since it was produced (cm) *
*        Iloflk = particle identity (Paprop numbering)                 *
*        Igroup = energy group for low energy neutrons                 *
*        Loflk = particle generation *
*        Louse  = user flag                                            *
*        Nrgflk = particle region number                               *
*        Nlattc = particle lattice cell number                         *

28

At each interaction/decay… etc
new particles are feeding the stack



(TRACKR)
TRACK Recording

Ntrack = number of track segments                           
Mtrack = number of energy deposition events along the track 

0 < i < Ntrack
Xtrack = end x-point of the ith track segment               
Ytrack = end y-point of the ith track segment               
Ztrack = end z-point of the ith track segment               

1 < i < Ntrack
Ttrack = length of the ith track segment                    

1 < j < Mtrack
Dtrack = energy deposition of the jth deposition event      
Dptrck = momentum loss of the jth deposition event          

Ntrack > 0, Mtrack > 0 : energy loss distributed along the  
track                              

Ntrack > 0, Mtrack = 0 : no energy loss along the track     
Ntrack = 0, Mtrack = 0 : local energy deposition (the       

value and the point are not re-
corded in Trackr)                  

COMMON / TRACKR /  XTRACK ( 0:MXTRCK ), YTRACK ( 0:MXTRCK ),
&                               ZTRACK ( 0:MXTRCK ), TTRACK   ( MXTRCK ),
&                               DTRACK   ( MXTRCK ), DPTRCK ( 3,MXTRCK ),

29

Transport of particles:
particles are taken from the Stack and
info for the particle during tracking are kept here



(TRACKR) : 2nd part
Jtrack = identity number of the particle: for recoils or    

kerma deposition it can be outside the allowed     
particle id range, assuming values like:           

208: "heavy" recoil                              
211: EM below threshold                          
308: low energy neutron kerma

in those cases the id of the particle originating  
the interaction is saved inside J0trck (which othe-
rwise is zero)                                     

J0trck = see above                                          
Etrack = total energy of the particle                       
Ptrack = momentum of the particle (not always defined, if   

< 0 must be obtained from Etrack)                    
Cx,y,ztrck = direction cosines of the current particle          
Cx,y,ztrpl = polarization cosines of the current particle       

Wtrack = weight of the particle                             
Wscrng = scoring weight: it can differ from Wtrack if some  

biasing techniques are used (for example inelastic 
interaction length biasing)                        

Ctrack = total curved path                                  
Cmtrck = cumulative curved path since particle birth        

30



(TRACKR) : 3rd part
Zfftrk = <Z_eff> of the particle                            

Zfrttk = actual Z_eff of the particle                       

Atrack = age of the particle                                

Wninou = neutron algebraic balance of interactions (both    

for "high" energy particles and "low" energy       

neutrons)                                          

Wcinou = charge  algebraic balance of interactions (for     

all interactions)                                  

Spausr = user defined spare variables for the current       

particle                                           

Ktrack = if > 0 neutron group of the particle (neutron)     

Lt1trk = initial lattice cell of the current track          

(or lattice cell for a point energy deposition)     

Lt2trk = final   lattice cell of the current track          

Iprodc = flag for prompt(=1)/radioactive products(=2)       

Ltrack = flag recording the generation number               

Llouse = user defined flag for the current particle         

Ispusr = user defined spare flags for the current particle  

…

&                   SPAUSR(MKBMX1), STTRCK, SATRCK, TKNIEL, TKEDPA,

&                   WCINOU,

…

&                   IPRODC, ISPUSR(MKBMX2), LFSSSC, LPKILL

31



(FHEAVY)
*        npheav = number of heavy  secondaries *
*        kheavy(ip) = type of the secondary ip *
*                   ( 3 = deuteron, 4 = 3-H, 5 = 3-He, 6 = 4-He,       *
*                     7-12 = "Heavy" fragment specified by Ibheav and Icheav ) *
*        cxheav(ip) = direction cosine of the secondary ip with respect to x-axis *
*        cyheav(ip) = direction cosine of the secondary ip with respect to y-axis *            
*        czheav(ip) = direction cosine of the secondary ip with respect to z-axis *            
*        tkheav(ip) = kinetic energy of secondary ip *
*        pheavy(ip) = momentum of the secondary ip *
*        wheavy(ip) = weight of the secondary ip *
*        agheav(ip) = "age" of the secondary ip with respect to the interaction time *

*        amheav(kp) = atomic masses of the twelve types of evaporated  *
*                     or fragmented or fissioned particles             *
*        amnhea(kp) = nuclear masses of the twelve types of evaporated *
*                     or fragmented or fissioned particles             *
*        anheav(kp) = name of the kp-type heavy particle               *
*        icheav(kp) = charge of the kp-type heavy particle             *
*        ibheav(kp) = mass number of the kp-type heavy particle        *

Note that kp = kheavy(ip) !!!

32



(PAPROP)
intrinsic PArticle PROPerties

*        am    (i) = i_th particle mass (GeV)                          *
*        ichrge(i) = electric charge of the i_th particle              *
*        ibarch(i) = baryonic charge of the i_th particle              *
*        ijdisc(i) = flag for discarding the i_th particle type        *
*        tmnlf (i) = mean (not half!) life of the i_th particle (s)    *
*        biasdc(i) = decay biasing factor for the i_th particle        *
*        biasin(i) = inelastic interaction biasing factor for the i_th particle *
*        lhadro(i) = True if the i_th particle type is a hadron *
*        jspinp(i) = i_th particle spin (in units of 1/2)              *
*        iparty(i) = i_th particle parity (when meaningful)            *

33



(FLKMAT)
FLuKa MATerials

*       Amss(i) = Atomic weight (g/mole) of the i_th material          *
*        Rho(i) = Density of the i_th material                         *
*       Ztar(i) = Atomic number of the i_th material                   *
*     Ainlng(i) = Inelastic scattering length of the i_th material     *
*                 for beam particles at the average beam energy in cm  *
*     Aellng(i) = Elastic scattering length of the i_th material for   *
*                 beam particles at average beam energy in cm          *
*      X0rad(i) = Radiation length of the i_th material in cm          *
*     Dmgene(i) = Damage energy of the i_th material (GeV)             *
*     Ainnth(i) = Inelastic scattering length of the i_th material     *
*                 for neutrons at threshold energy in cm               *
*     Medium(k) = Material number of the k_th region *
*     Mssnum(i) = Mass number of the target nucleus for the i_th material *
*                 if =< 0 it means that it is in the natural isotopic composition *
*     Libsnm(i) = flag whether inelastic interaction biasing must be done for this medium *
*     Matnam(i) = Alphabetical name of the i_th material number        *
*     Aocmbm(i) = Atomic density of the i_th material in barn^-1 cm^-1 *
*                 (Atoms Over Cm times Barn for Materials)             *
*     Eocmbm(i) = Electron density of the i_th material in barn^-1cm^-1*
*                 (Atoms Over Cm times Barn for Materials)             *

34



(EVTFLG)
EVenT FLaGs:

Flags indicating the event interaction type:   

LELEVT  =  Elastic interaction                               
LINEVT  =  Inelastic interaction                             
LDECAY  =  Particle decay                                    
LDLTRY  =  Delta ray production (Moller and Bhabha included) 
LPAIRP  =  Pair production                                   
LBRMSP  =  Bremsstrahlung
LANNRS  =  Annihilation at rest                              
LANNFL  =  Annihilation in flight                            
LPHOEL  =  Photoelectric effect                              
LCMPTN  =  Compton effect                                    
LCOHSC  =  Rayleigh scattering                               
LLENSC  =  Low energy neutron scattering                     
LOPPSC  =  Optical photon scattering                         
LELDIS  =  Electromagnetic dissociation                      
LRDCAY  =  Radioactive decay                                  

All LOGICAL variables!!!

35



36

mgdraw.f [1]
general event interface

Subroutine mgdraw is activated by option USERDUMP with WHAT(1) ≥ 100.0, 
usually writes a “collision tape”, i.e., a file where all or selected transport events 
are recorded. The default version (unmodified by the user) offers several 
possibilities, selected by WHAT(3)



37

mgdraw.f [2]

MGDRAW called at each step, for trajectory drawing and 
recording dE/dx energy deposition events 

BXDRAW called at boundary crossings (no record) 
EEDRAW called at event end (no record)
ENDRAW for recording point energy deposition events
SODRAW for recording source particles

One can remove their default writing and/or customize them.

Additional flexibility is offered by the user entry USDRAW, interfaced 
with the most important physical events happening during particle 
transport. 

The different ENTRY points of mgdraw



38

mgdraw.f [3]

All six entries can be activated at the same time by setting 
USERDUMP WHAT(3) = 0.0 and WHAT(4) ≥ 1.0.
They constitute a complete interface to the entire FLUKA 
transport. Therefore, mgdraw can be used not only to write a 
collision tape, but to do any kind of complex analysis (e.g., event 
by event output as in HEP applications).

When mgdraw should better not be used
l When biasing is requested (non-analogue run)
l Whenever low-energy neutrons (E<20 MeV) are involved, 

unless one has a deep knowledge of the peculiarities of 
their transport and quantities (i.e., kerma, etc)



39

mgdraw.f: the MGDRAW entry
MTRACK: number of energy deposition events along the track
JTRACK: type of particle
ETRACK: total energy of the particle
WTRACK: weight of the particle
NTRACK: values of XTRACK, YTRACK, ZTRACK: end of each track 

segment
MTRACK: values of DTRACK: energy deposited at each deposition 

event
CTRACK: total length of the curved path

Other variables are available in TRACKR (but not written by MGDRAW
unless the latter is modified by the user: particle momentum, direction 
cosines, cosines of the polarisation vector, age, generation, etc. see a 
full list in the comment in the INCLUDE file).



40

mgdraw.f: the BXDRAW entry

called at boundary crossing



41

mgdraw.f: the EEDRAW entry

called at the event end



42

mgdraw.f: the ENDRAW entry
called at point-like energy deposition

(for example: stopping particles, photoelectric effect, ...)



43

mgdraw.f: the SODRAW entry

It writes by default, for each source particle:
NCASE: number of primaries followed so far (with a minus sign to identify 

SODRAW output), from COMMON CASLIM
NPFLKA: stack pointer, in COMMON FLKSTK
NSTMAX: highest value of the stack pointer encountered so far, 

in COMMON FLKSTK
TKESUM: total kinetic energy of the primaries of a user written source, 

in COMMON SOURCM, if applicable. Otherwise = 0.0
WEIPRI: total weight of the primaries handled so far, in COMMON SOURCM



44

mgdraw.f: the USDRAW entry
called after each particle interaction 

(requested by USERDUMP WHAT(4) ≥ 1.0)



Mathematical library
FLUKA contains many mathematical routines of general utility, so in general 

it should not be necessary to call external mathematical libraries (many 
taken  from SLATEC):

flgaus: Gaussian adaptive integration
erffun: Error function
expin1: E1 exponential function
besi0d: Bessel function I0 (also I1, J0, J1, K0, K1)
dawsni: Dawson function
gamfun: Gamma function
radcub: Real solutions of 3rd order algebraic equation
flgndr: Legendre polynomials
yinter, d..intp: interpolation routines
rordin, rordde: Sorting of vector values
..............
Also: expansion in Laguerre and Chebyshev polynomials, Bezier fit, and 

many others...
For users who access the FLUKA source: they are in mathmvax directory
At some time it will be possible to have a short-writeup for their use.

45



A few examples (I)

EXTERNAL FINTEG

DOUBLE PRECISION FUNCTION FLGAUS ( FINTEG, XA, XB, EPSEPS, IOPT,

&                                                           NXEXP )

* Adaptive Gaussian quadrature routine

It gives the integral over the (XA,XB) interval of the product between X**NXEXP and 

the FINTEG function, to be coded by the user as a separate

DOUBLE PRECISION FUNCTION FINTEG (X)

---------------------------------------------------------------------------------------------

SUBROUTINE RADCUB ( AA0, AA1, AA2, AA3, X, X0, NRAD )

* Real solutions of 3rd order algebric equation

It computes real solutions of the equation:

A0*X^3++A1*X^2+A2*X+A3=0

The solutions are put in the array X; if there is only one real solution it is put into 

X(1), while X(2) and X(3) are set to 1.d32. If A0=0 the routine computes standard 

solutions of a second or first degree equation. If it doesn't exist any real solution the 

whole array X is set to 1.d32. It is possible to compute solutions with a scale factor 

X0, to avoid loss of significancy with very large or very small numbers. The flag NRAD 

records the number of real solutions found.

46



A few examples (II)

DOUBLE PRECISION FUNCTION GAMFUN ( X )

It calculates the double precision complete Gamma function for double 
precision argument X
---------------------------------------------------------------------------------------------
SUBROUTINE RORDIN ( RVECT, ICORR, LEN )

It rearranges a real array in increasing order
---------------------------------------------------------------------------------------------
SUBROUTINE RORDDE ( RVECT, ICORR, LEN )

It rearranges a real array in decreasing order
---------------------------------------------------------------------------------------------
DOUBLE PRECISION FUNCTION FLGNDR ( X, LMAX, PLGNDR )
* Function for LeGeNDRe polynomials

It computes Plmax (x) and stores all values Pi (x) for i=0,lmax into the PLGNDR 
array

47


