
F O O T
s i m u l a t i o n s
w i t h F L U K A
i n
n e w g e o m
b r a n c h
M I L A N O T E A M
S E P T E M B E R 2 0 1 9

I n t r o d u c t i o n

2

Managing FLUKA simulation in SHOE
• Main steps:

• shoe/build is the working directory for both reconstruction and simulation.
To run the simulation the user must work in shoe/build/Simulation

• Prepare input and geometry files

• Build the FLUKA executable using the FOOT user routines

• Run the simulation

• Collect the output files and producing the ROOT treeSHOE has the tools which
allow to modify/build the input/geometry etc.

3

P r e p a r i n g g e o m e t r y
& i n p u t f i l e s :
M a k e G e o

MakeGeo
• In shoe/build/Simulation are stored the simulation files. Input and geometry files,

can be built according to your purposes by means of makegeo

• In shoe/Simulation/MakeGeo.cxx are contained all the instruction to produce these
files

• When you compile the code (make in shoe/build/Simulation folder) the executable
makegeo is produced in shoe/build/bin

• You can execute it in the shoe/build/Simulation folder (../bin/makegeo) to produce
the simulation files

• But what does makegeo do? It is based on shoe libraries (shoe/libs/scr/*), it reads
parameter files and produces 3 files needed to run the simulation:
– foot.inp→ input file (beam, materials, etc)

– foot.geo→ geometry file

– parameters.inc→ include file of parameters needed
by the user routines

• DISCLAIMER: no instruction about libraries management/modification will be given in
this tutorial5

Opens and modifies the
existing foot.inp

Creates both files from
the scratches

Main parameters files for MakeGeo
ASCII files:

• shoe/build/Reconstruction/level0/config/FootGlobal.par
it allows choose which detectors to simulate by putting yes or no in a list.

• In shoe/build/Reconstruction/level0/geomaps there are:

– FOOT_geo.map which contains the positions and rotation angles in global coordinates of
all FOOT detectors and magnets

– TA*detector.map which contain, for each single detector (or magnet system), the relative
coordinates and rotation angle of every element composing the detector itself, together
with the material description. TAGdetector.map contains infos about target and beam

• These files also allow to choose and address the proper map of magnetic file, which
is contained in shoe/build/Reconstruction/fullrec/data

• An easy and quick access to these folders (config, geomaps and data), and so to
their files, is provided by logical links in shoe/build/Simulation

• There is no need to recompile shoe after the modification of parameter files6

MakeGeo - reading par files (I)

7

FootGlobal.par

You can choose which detectors simulate by putting yes or no
in shoe/build/Reconstruction/level0/config/FootGlobal.par
No need to recompile.

Creation of objects for materials (TAGmaterials), geo
tansformations (TAGgeoTrafo), detectors
(TASTparGeo, TABMparGeo, TAVTparGeo, TAITparGeo,
TAMSDparGeo, TATWparGeo, TACAparGeo,
TADIparGeo) and other general infos (TAGparGeo for
beam, target, standard geometry regions etc).

Dipoles
Start counter

Beam monitor
Vertex
Inner tracker

Microstrips
Scintillator

Calorimeter

MakeGeo.cxx

You can also change declare the
FLUKA version (pro/dev) you are
planning to use (reserved to
developers)

FootGlobal.par

The parameter files of each detector
(shoe/build/Reconstruction/level0/geomaps/TA*detector.map)
are read as well as the FOOT_geo.map, which contains the
positions in global coordinates.

MakeGeo - reading par files (II)

8

Example:
TAVTdetector.map

FOOT_geo.map

Positions,
dimensions,
material etc can be
modified in this files.
No need to
recompile the code
after modifications.

MakeGeo.cxx

Magnetic field

9

x y z Bx By Bz

To switch on the mag field you
have to put “yes” to the dipoles
in the FootGlobal.par and
declare the magnetic map
name in TADIdetector.map.

After running makegeo, the input file
and the parameters.inc contain all the
needed infos to run the simulation with
a magnetic field.

Summary of preliminary operations
To be carefully checked before running makegeo:

1) Primary type and energy (TAGdetector.map)

2) Target material (TAGdetector.map)

3) Detectors positions in global coordinates (FOOT_gep.map)

4) Detectors activated and FLUKA version (FootGlobal.par)

Then in shoe/build/Simulation you can run

../bin/makegeo

to produce foot.inp, foot.geo and parameters.inc.

10

W h a t M a k e G e o
a c t u a l l y d o e s

11

MakeGeo - print of geo: bodies

12

Printing of the bodies (PrintBodies in TA*base class) for all
the detectors and other elements (PrintStandardBodies
for blackbody and air, PrintTargBody for target in
TAGparGeo class)

Result in foot.geo:

Example for VT:
PrintBodies method in
TAVTparGeo class

Checks if vertex is included in FootGlobal.par

Retrieves vertex center and rotations in global
reference frame

If rotations are present, starts fluka
transformation

Calculates position of epitaxial layer

Prints the body for epitaxial layer

MakeGeo.cxx

MakeGeo - print of geo: regions

13

Printing of the regions (PrintRegions) for all the
detectors and other elements.

Result in foot.geo

Example for VT:
PrintRegions
method in
TAVTparGeo class

MakeGeo.cxx

MakeGeo - print of geo: regions (II)

14

All the detectors are subtracted from air
(PrintSubtractBodiesFromAir)

Result in foot.geo

Example for VT:
PrintSubtractBodiesFromAir method in
TAVTparGeo class

MakeGeo.cxx

MakeGeo - print of input: beam

15

PrintBeam is a method of TAGparGeo class
(shoe/libs/src/TAMCbase/TAGparGeo.cxx)
It gets the parameters (beam A, Z, pos, …)
from shoe/build/Reconstruction/level0/
geomaps/TAGparGeo.map

MakeGeo.cxx

Result in foot.inp

MakeGeo - print of input: physics

16

PrintPhysics is a method of TAGparGeo class
(shoe/libs/src/TAMCbase/TAGparGeo.cxx).
It is, at present, hardcoded → to be changed.
It handles transport threshold, as well as the
magnetic field. If the dipoles are included in
FootGlobal.par, the card MGNFIELD is printed.
It calls the routine magfld.f that handles
the magnetic field (more details in the
following).

MakeGeo.cxx

Result in foot.inp

MakeGeo - print of input: materials (I)

17

MakeGeo.cxx

Example of materials in foot.inp

Method of TAGmaterials class, which writes the cards
needed to define the materials (MATERIAL and
COMPOUND). It integrates the FLUKA standard materials
and the materials defined in shoe.

MakeGeo - print of input: materials (II)

18

MakeGeo.cxx

Result in foot.inp

Example for VT:
PrintAssignMaterial
method in TAVTparGeo
class

The PrintAssignMaterial method, beside associate the
region with their material, checks if the magnetic field is
present and activates (or not) in the card ASSIGNMA the
switch Magnetic, so that the simulation considers the
magnetic field inside that region.

MakeGeo - print of input: rotations (I)

19

MakeGeo.cxx

Result in foot.inp

In FLUKA it’s possible to perform only rotations around the 3 axes of the reference
frame. So, to rotate for example a VT sensor around its own axis one has firstly to
shift the sensor in (0, 0, 0), then rotate it, and finally put the sensor back in its global
position.

MakeGeo - print of input: rotations (II)

20

In SHOE two “types” of rotations are defined:
• Rotations of the whole detector, reported → FOOT_geo.map
• Rotations of single parts of the detector (ex. single VT sensors) for the detectors

which are “segmented” → TA*detector.map
The rotations implemented are:

MakeGeo - print of parameters.inc

21

MakeGeo.cxx

Result in parameters.inc

parameters.inc is an include file needed
by the user routines. It stores infos
useful to run quite automatedly the
simulation and it is written in FORTRAN.

B u i l d i n g
t h e F L U K A
e x e c u t a b l e

22

Scripts to link and compile the routines

23

The user routines, together with the parameter.inc file created by makegeo, must be
compiled and linked to produce the correct executable to run the simulation. This
executable will assure the creation of the FOOT customized output (see FOOT user
routines presentation).

Therefore, the user must run one of the following according whether the magnetic field
must be simulated or not:

• source link_FOOT.sh→ NO magnetic field

• source link_FOOT_mag.sh→magnetic field

This will respectively produce an executable:

• fluka_FOOT.exe

• fluka_FOOT_mag.exe

that must be then used when launching the simulation.

There are also the scripts for the FLUKA development version (reserved to developers).

R u n n i n g
t h e s i m u l a t i o n

24

25

Notice that not all the cards in the input file are modified by makegeo:

Further information in the
slides about user routines.

It calls the user-written routine usrini.f. The user can set in particular a debug flag (if >0 a verbose event
debug output is written on the *.log file) and a trigger. The last one specifies what kind of event will be
recorded in the output (i.e. FragTrg=6 to register only events with target fragmentation, FragTrg=0 to
register all events).

Calls the routine usrout.f. Do not modify this card.

This command activates calls to the user routine mgraw.f. Do not modify it.

Sets the random seed number.

Sets the number of primary. You can modify it by hand according to your purpose.

Before the simulation (I)

Before the simulation (II)
To be carefully checked :

1) Trigger flag to write events in the USRICALL card ❋

2) Number of primaries in the START card

The foot.inp file may of course be renamed to any useful <name>.inp

Untriggered output means that ~98.5% of events are primaries not
interacting in the target. They might interact in VT, IT, MSD or TW and
eventually die in CA, producing there many particles ➞ Very large TXT
file!

26

❋

Running the job

27

The executable thus produced (fluka_FOOT.exe or fluka_FOOT_mag.exe) has to be run
with the proper FLUKA script to launcg the simulation:

$FLUPRO/flutil/rfluka –e fluka_FOOT*.exe –N0 –M4

foot This will launch a run with 4 cycles for the input file foot.inp.

Depending on the number of available core it is possible to send several runs (each one
for a different input file!!) in parallel.

For each case a temporary fluka_xxxx directory will be created.

Progress of job can be checked looking at the tail of *.out or *.err file in the temporary
directory.

Example: 380000 620000 620000 1.0134497E-02 1.0000000E+30

- To stop a cycle : in fluka_xxxx create fluka.stop (touch fluka.stop)

- To stop a run: touch rfluka.stop

No. of events processed No. of events still to be processed Average cpu time/event at that time

At the end of the job

28

As a first thing, check in the *.log files possible messages of error.

Among other files produced by running the simulation, in each cycle a *TXT.dat file is
created.

Example:

ls -1 *TXT.dat

> foot001_TXT.dat foot003_TXT.dat
foot002_TXT.dat foot004_TXT.dat

The command

ls -1 *TXT.dat > foot.lis

will create a foot.lis file containing the list of files to be processed to create the root
output file.

A f t e r
t h e s i m u l a t i o n r u n

29

Converting the output into a ROOT file

30

The TXT files will be converted to a ROOT tree by means of a software: Txt2Root. This is
automatically compiled when you compile the code in shoe/build/Simulation, and can be
found in shoe/build/bin.

To convert a single .dat file:
../bin/Txt2Root –in foot001_TXT.dat -out outputname.root

To convert a list of .dat files:
../bin/Txt2Root –in foot.lis -iL -out outputname.root

The resulting ROOT file has the usual ntuple structure (see FOOT output presentation)
and it can be processed by the shoe reconstruction code.

This switch must be used to say that <name>.lis is a list of files

31

Thank you J

