Dipartimento di Scienze di Base e Applicate per l'Ingegneria

Measurements

Time window

- 4 * 6 hours shifts (there's a bonus hour in the first day: i believe that it counts as beam setup, I will Xchk.
 - Sat: 22 feb (2300 -> 600): (chance to have Oxy)
 - Sun: 23 feb (2300 -> 500): (chance to have Oxy)
 - Mon: 24 feb (2300 -> 500): Only He
 - Tue: 25 feb (2300 -> 500): Only He
- → Available beams: He, O.
 - From Brons: A: Please note, that for switching the source from carbon to oxygen and vice versa we need something like 1 h, hence we prefer to have oxygen beam times only over the week end.

Aim

Three different setups/measurements will be running in parallel

- Details on setup/geometry/electronics of single detectors and start counter discussed elsewhere: here general considerations about measurement goals/ strategy
- 1) Charged/prompt gammas particles production at 90°
 - Already <u>done several times</u>: 2 detectors (LYSO crystal + Drift Chamber) already used/known. 1 remaining new detector (Large Thin Scintillator) being built.

2) PET gammas at 45°

- Done only in Catania with <u>different experimental conditions</u>. 2 new detectors (never seen beam). Mechanics to be finished. Addition of 2 more detectors being considered (larger coverage along the PMMA/dose profile)
- 3) Fragmentation measurements btw 0° and 30°
 - 9 New detectors. <u>Never tried before</u>. 3x(2 Small Thin Scintillators + 1 BGO crystal) parallel systems measuring ToF and dE/E to measure the fragmentation of He -> (mainly He and p,d,t) and O -> whatever in few forward angles btw 0° and 30°

General overview

Charged particles:

- Measurement strategy: measure the production rates and spectra with a FIXED bragg peak position [driven by fragm. measurements need to have BP near the exit window from PMMA]
- Trigger given by either LTS&LYSO or by SC&LYSO (to be decided)
- Will detect p,d,t [identified by LYSO] and measure beta spectra [from ToF (LTS/LYSO)]; production position (Drift chamber back pointing); production rate (fluxes)
- Expected fluxes (@90°)
 - Measured at Catania and GSI:
 - Expected time needed to collect 1k tracks:
 - The BP monitoring will be done checking that we reconstruct each time the same position (since the BP position in space will be fixed)

Secondary @ 90° (II)

Prompt Gammas:

- Measurement strategy: measure the production rates and spectra with a FIXED bragg peak position [driven by fragm. measurements need to have BP near the exit window from PMMA]
- Trigger given by either LTS&LYSO or by SC&LYSO (to be decided)
- Will detect prompt gammas [identified by LYSO against large neutron bkg] and measure E spectra [from ToF pull fitting (LTS/LYSO)] and integrated production rate (fluxes)
- Expected fluxes (@90°)
 - Measured at Catania and GSI:
 - Expected time needed to collect 1 photons:

Secondary @ 90° (III)

- Still to be optimized/fixed:
 - Trigger strategy: LTS or SC?
 - ToF measurements: characteristics of the LTS detector (width, lenght)
 - Put some shielding BTW SC and LTS/CHMB/LYSO?
- To be checked:
 - how much time is needed for the measurements (charged particles)

PET emission

 Aim: study the emission of β+ emitters along the beam interaction with PMMA phantom

- Detectors placed at 45°: Catania like setup. This setup covers 7 cm along the beam path inside the PMMA. If larger path inside the PMMA is foreseen the full dose profile cannot be obtained.
- Expected gamma rate: 8Hz (?) ~ independent of beam (He or O)
- Energy (ToF) resolution?
- To be optimized:
 - Distance from beam axis.
 - Angle of operation (45°?)
 - Which part of the profile we want to cover.

8

Fragm. @ FW small angles (I)

- Aim:
 - Measure the Energy spectra at different small forward angles
 - Measure the production rates of different fragments
- Key quantities
 - Energy: measured by ToF (STS* and STS_{2*} detectors) and Xchk with BGO (suffering from no calib, + leak). what is the expected E/ToF resolution?
 - PID: done using dE/E (BGO and STS(2)* detectors)
- Trigger strategy:
 - either SC + BGOs or STS* and BGOs.
 - Time to collect enough statistics @ 1 angle configuration?

Existing measurements

- Gunzert marx:
 - Measure the Energy spectra at different small forward angles
 - Measure the production rates of different fragments
 - Uses scinti + BaF2
 - 0, 50, 10, 20 ,30
- Chiara (He)
 - Setup: 1msr sol ang detector @ 6 10^7 incoming He , 160 MeV/u on 15 cm $\rm H_2O,$
 - p, He normalized fluxes at
 - 5°: 3 10-4 p; 10-3 He
 - 15°: 7.2 10-5 p; 4.3 10-6 He
 - 30°: no He, 1.6 10-5 p

Fragm. @ FW small angles (II)

- To be optimized:
 - Trigger strategy
 - STS* dimensions: both at 0° and at != 0° (not only thickness but also width and height)
 - Number of angles at which we want to perform the measurement