MONDO News from the On behalf of MONDO collaboration Michela Marafini and Davide Pinci

Conclusion of workshop talk

a fourth GEM to the stack;" \dots the light is not enough we'll try to increase the amount of CF_4 in the mixture or to add

He/CF₄ 60/40 (increase of CF₄ by a factor about 10); We started from the easiest: increase the amount of CF_4 in the mixture. We moved to an

From this paper an increase of a factor 10 in gain and a lower ratio photons/ electrons are expected; The overall gain in light wasn't expected to be huge;

Michela Marafini and Davide Pinci on behalf of MONDO project

N

The gas mixture: Garfield

- about 10 clusters in average in the 3 mm drift gap. Therefore, the mean distance between two ionization points is about 300 µm. The ionization due to the crossing of 2 GeV muons in the 3 mm drift gap were studied: muons produce
- The distribution of the number of electrons per cluster has a mean value of 2.3.
- The total number of primary electrons due to a minimum ionizing muon crossing the drift gap perpendicularly to the GEM plane is thus expected to be around 20.

Experimental set-up: PMT

The light yield of the triple-GEM detector was measured by means of cosmic rays;

Michela Marafini and Davide Pinci on behalf of MONDO project

4

A quantum efficiency below 5% is

expected on the orange-red part;

trigger penetrating muon tracks;

Two NaI scintillators used to

Light produced by the triple-GEM collected by a R9800 PMT;

Charge spectra: cosmic rays and PMT

The waveforms were numerically integrated to evaluate the total collected charge

A huge increase not expected from published data; The total amount of light is 100 times higher;

The larger pedestal is due to the different scale on the scope used for the DAQ;

Example of the charge spectra obtained with the highest gain for stable operation;

The pedestal is evaluated in a similar gate before the trigger signal;

Electric field optimisation

The dependence of the light yield on the electric fields was studied;

A maximum value found for drift field values between 1.5 kV/cm and 2.0 kV/cm

The light yield increases very rapidly while increasing the drift field while it is almost stable for values in the range 2.0÷3.0

We decided to operate with a drift field of 1.5 kV/cm and transfer fields at 2.0 kv/cm

The CMOS-Camera

Schneider bright lens The PMT was replaced by an ORCA flash 4.0 camera that we instrumented with a

- low noise: nominal level lesser than 2 photons per pixel;
- high sensitivity: a quantum efficiency higher than 70% in the CF4 emission spectral range;
- surface of 13.3 mm x 13.3 mm • high granularity: 2048 x 2048 pixels with an area of 6.5 μ m x 6.5 μ m for a total sensitive

The performance of the photo-sensor were studied by means of a calibrated light source;

The camera behaviour is well linear in the whole studied range with a response of 0.91±0.01 counts

In order to evaluate the noise level, the response of a pixel was acquired several times while the camera was kept in the dark. Fluctuations of the pedestal are lower than 2

Fluctuations of the pedestal are lower than 2 counts, i.e. lower than two photons per pixel in good agreement with the expectations

00

The lens

Schneider bright lens The PMT was replaced by an ORCA flash 4.0 camera that we instrumented with a

Pe	ount	ter Thread N	orking Distance (mm) 3	eld of View @ Min Working Distance (mm) 7	stortion (%)	eld of View, 1/2" Sensor 2	erture (f/#) f	aximum Camera Sensor Format	cal Length FL (mm) 2	
Fixed Focal Length Lens	C-Mount	M39 x 0.5	300 - ∞	76.80	<-3	20°	f/0.95 - f/11	1"	25.0	

A de-magnification of a factor about 10 was obtained; a distance of about 20 cm with with a field of view of about 10x10 cm²; By inserting a 1.0 mm spacer between the camera and the lens we were able to work at

Michela Marafini and Davide Pinci on behalf of MONDO project

Each pixel looked at a 50 µm x 50 µm surface;

By means of this setup we were able to acquire several images of long and straight tracks as the above ones.

They are very likely due to cosmic rays;

loosing in "clearness"...) (We are having some problems in converting these heavy images in png format without

Michela Marafini and Davide Pinci on behalf of MONDO project

Light collection

To study the collection of the light by the sensor a simple analysis was performed;

The response distribution of the pixel along the track was compared with the one obtained in a similar non illuminated area;

In the not-illuminated region a response 99 ± 2 was found, in good agreement with the measurements performed in the dark conditions;

A large amount of pixels with a response up to 30 photons above the pedestal was obtained in the illuminated region.

A light yield of about 600 photons per track millimetre was evaluated

Michela Marafini and Davide Pinci on behalf of MONDO project

12

Electrons

produced by natural radioactivity and traveling within the drift gap; During the data taking, several images of short, intense and curved tracks were acquired; These tracks (as the ones shown in Fig. 10) are very likely due to ionizing electrons

13

Michela Marafini and Davide Pinci on behalf of MONDO project

14

Efficiency for electrons

Conclusion and future steps

The use of more CF₄ allowed to increase the light production;

For muon tracks an amount of 600 photons/mm were collected;

For electrons tracks about ten times more;

We intend to:

holes; Assembly new detector with larger drift gap (1 cm) and smaller GEM

Test new gas mixture with a larger amount of $CF_4(60\%)$;

Perform the same tests at the Frascati electron beam (BTF) in November;

\bigcirc
R
T
as
²
\bigcirc

Imaging de	evice	Scientific CMOS sensor FL-400	400	000		2
Effective n	umber of pixels	2048(H) × 2048(V)			Wave	length (nr
Cell size		6.5 µm × 6.5 µm				
Effective a	rea	13.312 mm × 13.312 mm				
Full well ca	apacity (typ.)	30 000 electrons				
Readout	Standard scan (at 100 frames/s)	10 ms				
time	Slow scan (at 30 frames/s)	33 ms				
Readout	Standard scan (at 100 frames/s, typ.)	1.6 electrons rms (1.0 electrons median)			
noise	Slow scan (at 30 frames/s, typ.)	1.4 electrons rms (0.8 electrons median)			
Dynamic ra	ange (typ.)*2	37 000:1				
Quantum e	afficiency	Over 70 % at 600 nm and 50 % at 750 r	Im			
Cooling me	ethod	Dark current (typ.)	Sensor tem	perature (no	ominal)	
Forced air	(Ambient at +20 °C)	0.06 electrons/pixel/s	–10 °C			
Water (+20	(3, 0	0.02 electrons/pixel/s	–20 °C			

Water (+15 °C)

0.006 electrons/pixel/s

16

-30 °C