

October 2014

MONDO

- We need to measure (and track!) the neutrons emitted during a particle therapy treatment:
 - neutrons of [10 -200] MeV;

Neutron energy	Energy range
0.0–0.025 eV	Cold neutrons
0.025 eV	Thermal neutrons
0.025–0.4 eV	Epithermal neutrons
0.4–0.6 eV	Cadmium neutrons
0.6–1 eV	EpiCadmium neutrons
1–10 eV	Slow neutrons
10–300 eV	Resonance neutrons
300 eV-1 MeV	Intermediate neutrons
1-20 MeV	Fast neutrons
00.14-14	Deleti tette en de

We want to track the protons emitted via elastic scattering by the neutrons:
protons of [10 -200] MeV;

> 20 MeV

- Scintillating fibers of 250 µm
 - we want to use the GEM system in order to intensify the image..
 - the read out of the GEM is the main topic of the discussion..

External trigger system
 Multianods PMT;

4 cm

8 cm

Together with electrons several photons are produced => we can detect those photons!!

The ratio between the number of produced photons and electrons
 depends from the gas
 mixture as well;

 A mixture of Ar +5%CF₄ gives a ratio of about 0.5;

Fig. 3. Total number of photons emitted per secondary electron, above 400 nm, as a function of charge gain for several CF_4 mixtures. The systematic error is estimated to be less than 20%.

 With a triple GEM system a gain of 10⁴ is achievable;

Fig. 3. Gain as a function of GEM voltage measured with ⁵⁵Fe X-ray source. The 3×3 cm² detector had a CsI layer deposited on the top face of GEM1. The lines represent exponential fits to the data with 10×10 cm² GEMs.

- the GEM produces several photons:
 - <50% geometrical collection efficiency;</p>
 - about 0.5 photons/electrons;
 - with a gain of $\sim 10^4$

2000 optical photons on the sensor

4 x 4 x 8 cm³ scintillator

- READOUT:
 - the GEM produces several photons..
 - ..we need "something" to detect ~2000 optical photons with a resolution of about 50 µm..

4 x 4 x 8 cm³ scintillator

Layout of the detector without the fibers read out

trigger definition:

- fast trigger => first two dynodes of each PMTs
- slow trigger=> logic programmable with 2 x 64 anodes informations

test configuration: BaF2? other?

