

Photon Detection with MPGDs

S. Dalla Torre

Gaseous Photon Detectors

Silvia DALLA TORRE

OUTLINE

- Introductory considerations
- Gaseous PDs, <u>historical overview</u>
 - I generation photoconverting vapours
 - II generation <u>MWPCs with solid state CsI PC</u>

MPGD-based PDs

- <u>Basic principles</u> and architectures
 - Gaseous PDs with sensitivity in the visible range
 - Cryogenic MPGD-based PDs
 - <u>Detecting electroluminescence</u> produced in avalanche processes for frontier research and applications

Conclusions

OUTLINE

- Introductory considerations
- Gaseous PDs, <u>historical overview</u>
 - I generation photoconverting vapours
 - II generation <u>MWPCs with solid state CsI PC</u>

MPGD-based PDs

- <u>Basic principles</u> and architectures
- Gaseous PDs with sensitivity in the visible range
- Cryogenic MPGD-based PDs
- <u>Detecting electroluminescence</u> produced in avalanche processes for frontier research and applications

Conclusions

 the most effective solution for what concerns the cost of large detector area application (a cheap approach)

operation in magnetic field (low sensitivity to B)

 minimum material budget when the photon detectors have to seat in the experiment acceptance (advantages for experiment architectures)

 Historically, the development has been guided by the requirements of the Cherenkov imaging counters for PID, namely the goal has been the challenging detection of <u>SINGLE</u> <u>PHOTONS</u>

Detection of <u>scintillation light</u>, mainly in rare-event noble liquid counters

 The relevance of generating/detecting <u>ELECTROLUMINESCENCE</u> <u>PHOTONS</u> by MPGDs for fundamental research and applications has become evident more recently

OUTLINE

- Introductory considerations
- Gaseous PDs, <u>historical overview</u>
 - I generation photoconverting vapours
 - II generation <u>MWPCs with solid state CsI PC</u>

MPGD-based PDs

- <u>Basic principles</u> and architectures
- Gaseous PDs with sensitivity in the visible range
- Cryogenic MPGD-based PDs
- <u>Detecting electroluminescence</u> produced in avalanche processes for frontier research and applications

Conclusions

Roma, 20/1/2015

GASEOUS PDs, I GENERATION

Gaseous photon detectors, the first generation: converting vapours **OMEGA** SM3 Gas Radiator (C₅ F₁₂/N₂ Mix) ČERENKOV Eciplane Array NULTISTEP PROPORTION External Drift Box ield Cant WIRE CHAMBER ECTRON/HADRON PLAN VIEW E 605 E605 C, H, + TMAE Liquid Radiato (C₆ F₁₄) G10 Box Rib Photon Detector 20 µm wires ĊH₄+TEÅ Fiberglas Siderail Photor CaF₂ Windo LiERad 192 mm **SLD - CRID** atm. C.F.d Photosensitive drift volume CHz - (0.25) C2Hz TMAE **CLEO III** DELPHI **FMAE** ΓΕρ (Tetrakis-Dimethylamine-Ethylene) (Tri-Ethyl-Amine)

Gaseous Photon Detectors

Silvia DALLA TORRE

GASEOUS PDs, I GENERATION

Gaseous Photon Detectors

GASEOUS PDs, I GENERATION

GASEOUS PDs, II GENERATION

MWPCs with solid state photocathode (the RD26 effort)

Roma, 20/1/2015

Gaseous Photon Detectors

GASEOUS PDs, II GENERATION

Gaseous Photon Detectors

Reflective versus semi-transparent photocathodes

- REFLECTIVE larger photoelectron collection :
 - Semitransparent photocathode the application of a <u>thin metallic film</u>, which absorbs photons, on the entrance window is required
 - the <u>probability of photoelectron absorption</u> is lower in a reflective photocathode than in a semitransparent one as <u>the conversion probability</u> is the highest at the entrance surface of the photo-converter
- the <u>thickness</u> of the photo-converter layer is <u>non critical</u> in the reflective configuration, contrary to the semitransparent one: <u>this aspects is very relevant for large area detectors</u>

Photoelectron extraction from a CsI film, the role of gas and <u>E</u>

Roma, 20/1/2015

Gaseous Photon Detectors

Silvia DALLA TORRE

GASEOUS PDs, II GENERATION

TOWARDS THE FUTURE

TWO REQUESTS

- Reduced photon and Ion BackFlow (IBF)
 - Reduced ageing
 - High gain \rightarrow high photoelectron detection efficiency
- Intrinsically fast gaseous detectors (signal due to electron motion)
 - Short integration time
 - High rate environments

MICROPATTERN GASEOUS DETECTORS

OUTLINE

- Introductory considerations
- Gaseous PDs, <u>historical overview</u>
 - I generation photoconverting vapours
 - II generation <u>MWPCs with solid state CsI PC</u>

MPGD-based PDs

- <u>Basic principles</u> and architectures
- Gaseous PDs with sensitivity in the visible range
- Cryogenic MPGD-based PDs
- <u>Detecting electroluminescence</u> produced in avalanche processes for frontier research and applications

Conclusions

ION & PHOTON BLOCKING GEOMETRIES

Gaseous Photon Detectors

Silvia DALLA TORRE

ION & PHOTON BLOCKING GEOMETRIES

Roma, 20/1/2015

Gaseous Photon Detectors

GEM-based PDs and IBF

Gaseous Photon Detectors

OVERCOMING IBF

More complex geometries needed with extra electrodes to trap the ions: Micro-Hole & Strip Plate (MHSP), COBRA MHSP X-Ray detector J.F.C.A. Veloso et al., Rev.Sc. Instr. 71 (2000) 2371 radiation window **R-MHSP** E[kV/cm] E[kV/cm] 50 45 30 25 20 15 E=0.5kV/cm 50 45 40 - <u>_</u> 25 20 15 410V 50 10 A.V. Lyashenko et al., hole region MS region JINST 2 (2007) P08004 2nd multiplication stage 10⁻² 10⁰ Flipped-Cobra/2GEN COBRA 10-1 = 0.2kV/cm 10-3 10-2 0.2kV/cm A.V. Lyashenko et al., Ш NIMA 598 (2009) 116 监 10-3 10-4 10-4 Ar/CH₄(95/5), 760 Torr 10-5 10⁻⁵ Torr Ar/CH₄(95/5) 10² 10³ 104 105 10-6 104 10³ 106 Total gain 105 A.V. Lyashenko et al., Total Gain NIMA 598 (2009) 116

Roma, 20/1/2015

Gaseous Photon Detectors

Silvia DALLA TORRE

GEM-based PDs and GAIN

LARGE GAIN RELEVANT FOR SINGLE PHOTON DETECTION

GEM-based PDs in laboratory studies

for single photoelectron detection, they have been operated at gains > 10⁵ (see, for instance, the plots of the previous slides)

GEM-based detectors in experiments

- Always a <u>MIP flux and small rates of heavily ionizing fragments</u> crossing the detectors (even when the detectors are used as photon detectors)
 - □ At COMPASS: G ~ 8000 (B. Ketzer, private comm.)
 - □ At LHCb: G ~ 4000 (M.Alfonsi NIMA 581 (2007) 283)
 - □ At TOTEM: G ~ 8000 (G. Catanesi, private comm.)
 - Phenix HBD: G ~ 4000 (W. Anderson et al., NIMA 646 (2011) 35)

→ In experiments, small chances

to operate GEM-based PDs at gains > 10⁴

THGEM-based PDs, why ?

PCB technology, thus:

- robust
- mechanically self supporting
- industrial production of large size boards
- <u>large gains</u> have been immediately reported (rim !)

Comparing to GEMs

- Geometrical dimensions X ~10
 - But e⁻ motion/multiplic. properties do not!
 - Larger holes:
 - dipole fields and external fields are strongly coupled
 - $\hfill\square$ e^ dispersion plays a minor role

About PCB geometrical dimensions:

Hole diameter :	0.2 - 1 mm
Pitch :	0.5 - 5 mm
Thickness :	0.2 - 3 mm

introduced in // by different groups: L. Periale et al., NIM A478 (2002) 377. P. Jeanneret, PhD thesis, Neuchatel U., 2001. P.S. Barbeau et al, IEEE NS50 (2003) 1285 **R. Chechik et al, .NIMA 535 (2004) 303**

ABOUT THE RIM

23

X-ray measurements

THGEM GAIN & RIM

Roma, 20/1/2015

Gaseous Photon Detectors

Silvia DALLA TORRE

More about THGEMs

Gaseous Photon Detectors

Silvia DALLA TORRE

Gaseous Photon Detectors

Roma, 20/1/2015

Gaseous Photon Detectors

Silvia DALLA TORRE

27

INFN

Istituto Nazionale

-25

-50 -75

-100

Photoelectron extraction from THGEM PC fully confirmed by direct observation with "Leopard"

G.Hamar and D.Varga, NIMA 694(2012) 16

Roma, 20/1/2015

Photon Detection with MPGDs Si

Silvia DALLA TORRE

28

INFN Istituto Nazionale

THGEM R&D for RICHes

Roma, 20/1/2015

300 x 300 mm² active surface

Photon Detection with MPGDs

Silvia DALLA TORRE

Č photon

0 2 4 6 8 10 12 14 16 18 20 22 24

to Nazionale

V.Peskov et al., NIMA 695 (2012) 154

N of detected photons is ~60-70% of MWPCs with CsI Ne+10%CH4, used with △V at 650-750 V

5. Conclusions and Outlook

We report the first successful implementation of a set of CsI-TGEMs with a liquid radiator where a Cherenkov ring has been observed. The results obtained are encouraging and suggest that the present performance could be improved in the future by optimizing elements of the design. We are launching now systematic studies on TGEM geometry optimization allowing increasing the value of $\eta_{\rm rel}$, $\varepsilon_{\rm col}$ and $A_{\rm eff}$. We also are planning to investigate

Relative extraction efficiency
Respect to pure methane at
E ~ 7kV/cm ~ 75% (my estimate)

HYBRID MPGD PDs (THGEM +

Photon Detection with MPGDs

Silvia DALLA TORRE

HYBRID MPGD PDs (THGEM + .

Photon Detection with MPGDs

OUTLINE

- Introductory considerations
- Gaseous PDs, <u>historical overview</u>
 - I generation photoconverting vapours
 - II generation <u>MWPCs with solid state CsI PC</u>

MPGD-based PDs

- <u>Basic principles</u> and architectures
- Gaseous PDs with sensitivity in the visible range
- Cryogenic MPGD-based PDs
- <u>Detecting electroluminescence</u> produced in avalanche processes for frontier research and applications

Conclusions

Roma, 20/1/2015

Gaseous Photon Detectors

Silvia DALLA TORRE

Dedicated photoelectron extraction studies

F. Tokanai et al., NIMA 610 (2010) in press

The Capillary Plate (CP) approach

Roma, 20/1/2015

Gaseous Photon Detectors

Silvia DALLA TORRE

36

37

the GEM approach

Roma, 20/1/2015

Gaseous Photon Detectors

Silvia DALLA TORRE

OUTLINE

- Introductory considerations
- Gaseous PDs, <u>historical overview</u>
 - I generation photoconverting vapours
 - II generation <u>MWPCs with solid state CsI PC</u>

MPGD-based PDs

- <u>Basic principles</u> and architectures
- Gaseous PDs with sensitivity in the visible range
- Cryogenic MPGD-based PDs
- <u>Detecting electroluminescence</u> produced in avalanche processes for frontier research and applications

Conclusions

CRYOGENIC MPGD-PDs

- Read-out elements of cryogenic noble liquid detectors
 - Rear event detectors (v, DM)

 ΔV_{THGEM}

ΔVptm

AVMICROMEGAS

- Detecting the scintillation light produced in the noble liquids
- Options of scintillator light and ionization charge detection by a same detector !

Etrans

S.Duval et al., JINST 6 (2011) P04007

b)

WINDOWLESS (2-PHASES)

OPERATED IN THE CRYOGENIC LIQUID

Roma, 20/1/2015

a)

ELECTROLUMINESCECE

MPGDs are source (and detection) of electroluminescence

Fast, no ion distortion

- Gaseous Compton camera for medical applications
 - Electroluminescence light is detected by THCOBRA with 2D R-O
 - Drift time provides the third coordinate

OUTLINE

- Introductory considerations
- Gaseous PDs, <u>historical overview</u>
 - I generation photoconverting vapours
 - II generation <u>MWPCs with solid state CsI PC</u>

MPGD-based PDs

- <u>Basic principles</u> and architectures
- Gaseous PDs with sensitivity in the visible range
- Cryogenic MPGD-based PDs
- <u>Detecting electroluminescence</u> produced in avalanche processes for frontier research and applications

Conclusions

SUMMARY / CONCLUSIONS

GASEOUS PHOTON DETECTORS

- Still no other approach to instrument large surfaces at affordable costs
- MPGD-BASED PHOTON DETECTORS
 - The handle to overcome the limitations of open geometry gaseous PDs
 - R&D in the context of MPGDs: dedicated developments needed for photon detection
 - A wide R&D effort (wider than what I could present) !
- APPLICATIONS OF MPGD-BASED PHOTON DETECTORS
 - From PID to v, DM, medical applications ...

THANK YOU

SPARE SLIDES

GASEOUS PDs, THE PRESENT

MWPCs with CsI photocathode, the <u>limits</u>

- Severe recovery time (~ 1 d) after detector trips
- Feedback pulses
 - Ion feedback and photons from the multiplication process
- Aging after integrating a few mC / cm²
 - Ion bombardment of the photocathode

Gaseous Photon Detectors

ABOUT THE RIM

Gaseous Photon Detectors

Silvia DALLA TORRE

MORE ABOUT THE RIM

Diam (mm)	Pitch (mm)	Rim (µm)	Thick (mm)
0.3	0.7	0	0.4
0.3	0.7	10	0.4
0.3	0.7	100	0.4

the charge accumulation at the dielectric surface that allows to obtain much larger gains • makes it <u>difficult to have complete charge</u> <u>collection</u>

S. Dalla Torre et al., IEEE – NSS 2008 , Dresden 19-25/10/2008

Roma, 20/1/2015

Gaseous Photon Detectors

Silvia DALLA TORRE

